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The Abelian Higgs model—a U(1) lattice gauge theory coupled to a fixed-length scalar
field—is studied using Monte Carlo techniques. The phase diagram of the zero-
temperature model on a four-dimensional Euclidean lattice is elucidated for systems with
charge-one and charge-two Higgs fields. The order of various transitions is tentatively
determined. Possible implications for quasiconfinement of quarks and gluons are also

discussed briefly.

I. INTRODUCTION

The Abelian Higgs model provides us with an
excellent prototype for the study of more complex
models of matter interacting with gauge fields. It
consists of a scalar field of fixed magnitude cou-
pled to the field of a massless photon in the usual
U(1) gauge-invariant fashion. As is shown below,
the model can be thought of as an appropriate
large —self-coupling limit of a lattice version of
scalar electrodynamics in which the magnitude of
the scalar field is allowed to vary. The analysis of
the Abelian Higgs model may thus furnish insight
into the nature of the more general but noncom-
pact scalar model.

The phase structure of the fixed-magnitude
model has been discussed previously, at both
zero' ~* and finite temperature,* in the analytically
accessible regions of large and small couplings.
However, several important questions are beyond
the reach of these techniques, and can at present
only be studied by numerical methods such as
Monte Carlo simulations. Such calculations have
been performed for the Abelian Higgs model in
three dimensions,’ as well as the closely related Zy
models in four dimensions.® The focus here is on
the Euclidean four-dimensional Abelian Higgs
model at zero temperature. The nontrivial phase
structure of the lattice theory is mapped out by a
Monte Carlo analysis, and in some cases the order
of the various phase transitions is tentatively deter-
mined.

One specific question which can be probed
within this framework concerns the qualitative
differences of the phase diagrams for different rep-
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resentations of the Higgs fields. The gauge group
in this case is U(1). External sources in the defin-
ing fundamental representation (i.e., with unit elec-
tric charge) are completely screened only by Higgs
fields in the fundamental representation (i.e., which
also carry unit charge). In the realm of strong
coupling and in the absence of these charge-one
scalars electric charges are confined. If a unit-
charge scalar field is present, however, it becomes
energetically favorable to produce Higgs pairs from
the vacuum, thereby screening the sources and
spoiling confinement.

The result is that the phase diagram of the
charge-one Higgs lattice theory is dramatically dif-
ferent from its counterparts with multiply-charged
scalar fields. In the latter case, three distinct
phases should occur! ~*—namely, (1) a confinement
phase, where the photon is presumably massive
and there are no free charges in the spectrum of
the theory, (2) a Higgs phase, where the photon is
again massive but electric charges experience only
short-ranged interparticle forces, and (3) a
Coulomb phase, wherein massless photons give rise
to the usual interparticle Coulombic force. With
the Higgs field in the fundamental representation,
however, analysis' ~* suggests that the Higgs and
confinement phases are continuously connected.
Both of these phase structures are verified here nu-
merically.

The work presented here may also have some
bearing on the possibility of unconfined quarks and
gluons at high energies.” In order to implement
quasiconfinement in the fashion proposed by Ref.
7, the transition from the confining to the broken-
symmetry phase in a continuum SU(3) Higgs
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model must not be first order.® Our findings are
consistent with a higher-order transition for the
analogous transition in the Abelian Higgs model,
provided the Higgs scalars are in the fundamental
representation. A discussion of this point may be
found at the conclusion of the paper.

II. MODEL AND METHODS
A. The model

The Abelian Higgs model is studied here on a 4*
hypercubic Euclidean lattice with lattice spacing a.

A Higgs field V/By ¢, is defined on each site n of
the lattice, subject to the constraint

|, |2=1 for all n. (1)

Electromagnetic field variables U,, are associated
with each link connecting site n with site n + Q.
The internal-symmetry group is U(1), so that ¢,
and U,, are simple phases e'®, with —r <0<
The dynamics of this interacting system are
governed by the action

A=B Y Agn,u,v)+By X, Ayn,u), (2a)

npv np
HFEv

where the plaquette A and scalar actions Ay are
given by

Ag(npu,v)=5(1-U,,U, caUniop Uny™ ),

As seen below, the power ¢ is identified with the
charge of the Higgs field. The action is locally
gauge invariant with respect to the set of transfor-
mations

Un;,t_’ V:+;1,Uny Vi,
Sn—>Vudbn,

where V, —e™" are elements of the underlying
U(1) gauge group.

The constraint [Eq. (1)] can also be implemented
by allowing the magnitude of the scalar field to
fluctuate but including a suitable potential term in
the action. One possible extension of Egs. (2) is

A'=B 3 Ag(n,u,v)+By 3 Ap(nu)
niv nu
nFEv

+AZ (¢, | 2=12 @)

(3)

Note that in the limit A— o configurations in
which |@, | is different from unity are not impor-
tant.

With the interpretation

1

B: 'e_27
V BH¢n =aq)(xn )1 (5)

U, =expliaed,(x,)]

in terms of the lattice spacing a and the electric
charge e, the naive continuum limit (a — 0) of Eq.

1 (2b) (4) produces the familiar Euclidean action of scalar
Ap(np)=7 | Unp®éy 1o~ | % elecrzrodynamics:
|
Alontinuum = [ d*X[TF )+ 7 | (3,+iged, ) D(x) | *+A'( | ©(x) | 2= f)*] ©6)
[
with finite limiting values for all physical quantities.
A Such a procedure may only be possible for theories
N=— (7a) whose naive continuum limits correspond to renor-
Bu malizable theories.” It is here we see the advantage
and of casting the lattice model in the form of Eq. (4),
By whose naive continuum limit [Eq. (6)] is a renor-
f =2 (70) malizable theory of substantial interest.!° The

Here the parameter g specifies the charge of the
Higgs field @ in units of e. Extracting the contin-
uum limit in this manner, however, is invalid as
the simple ¢ — O limit is singular. Instead, the
bare coupling constants (e,y,A) must be adjusted
with the removal of the ultraviolet cutoff to realize

technique of adjusting the bare coupling constants
together with the lattice spacing may be applicable
in this case. It is not clear that the analogous
statement may be made for the Abelian Higgs
model [Egs. (2)] whose naive a — 0 limit gives a
generalization of the nonlinear o model, which is
nonrenormalizable.
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Therefore, no claim is made that the phase
structure numerically examined in this work has a
direct connection to any continuum theory; instead,
the results here represent an interesting and neces-
sary elaboration of the more realistic theory of Eq.
(4) in the limit of large coupling (A— ). To
ascertain the extent to which this statement is true,
work on the lattice model of Eq. (4) at finite values
of A is now in progress.

B. Detection of phase transitions

The vacuum expectation value (VEV) of any
function F of the field variables ¢, and U,, can be
evaluated numerically for various values of 3 and
Br. These expectation values are defined by the
relation

(F($,Up))o=Z" [ D[4,12[Up,)e ~*F (s, Uy,

(8)
where the partition function Z is given by
Z= [ 9[4,12[U,.le . 9

In Eq. (8) Z[e’] is the group-invariant measure
for representation e'® of the U(1) gauge group and
is a simple integration over the phase a:

T da,,

f@[eia]=n
n -7 2T

Note that the gauge volume is finite on the lattice.
Thus there is no need to fix the gauge; indeed gen-
eral experience with Monte Carlo simulations sug-
gests better convergence if the gauge is allowed to
fluctuate.!!

The technique of Monte Carlo computer simula-
tion is to make the approximation

(10

zF DU, (11)

1_1

(F(¢,,,U,,,,))0_
where (i) labels a sequence of field configurations,
each chosen according to a specified algorithm.
For an algorithm satisfying the requirements of de-
tailed balance and positive definiteness, this ap-
proximation of the full path integral can be shown
to obey a central limit theorem.!? This theorem
assures us that the approximation converges to
(F), in the limit that N, the total number of con-
figurations, goes to infinity. The calculations
presented here utilize the Metropolis algorithm,'?
which fulfills these requirements.

Because the Abelian Higgs model possesses a

continuous U(1) symmetry, Elitzur’s theorem'*
states that no local order parameter exists. This
theorem does not preclude the determination of the
phase structure, however. Nonlocal gauge-
invariant quantities such as the average plaquette

P= (4p(n,p,v))o (12)
NDV % oL,V
e
and the average scalar
Ay (n, 1
NHVE( aln,u))o (13)

(where V is the number of sites in the system, N
the number of plaquettes per link and Ny the
number of links per site) are accessible to measure-
ment. The bulk of this work consists of a calcula-
tion of P and S as functions of g, 3, and By.

Lines of phase transitions in the (B,8y) plane are
most easily found via a hysteresis effect. Figure 1
illustrates the method: we begin at large values of
B in an ordered configuration (all ¢,, U,, set equal
to unity) and step down in 3, measuring the aver-
age plaquette P for a finite number M( < 30) of
Monte Carlo iterations at each value of S selected.
Far away from the critical point, the time taken
for the system to settle close to equilibrium is
small (<5 iterations) compared to M."> In the vi-
cinity of the critical point, however, the relaxation

1.0 T T T T T T T
L° o qQ =2 i
(o] =
0.8} ° By= 1.5 _
i x -
X
0.6 x _
P | ° l
X
0.4} o ~
= o x i
(o] x
0.2+ o4 o, -~
| 090 44
0 1 1 1 1 1 1 1
0 0.4 0.8 1.2 1.6

FIG. 1. Detection of a phase transition via a hys-
teresis effect. The circles (O ) denote “heating” runs
starting from large 3 and decreasing stepwise to smaller
values. The crosses (X) indicate “cooling” runs per-
formed after the lowest value of 3 is reached. The
value of B where the width of the hysteresis in P is a
maximum is taken to be the critical value f3,.
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time exceeds M and equilibrium is not reached. In
graphical terms, the initially ordered configuration
has insufficient time to disorder, resulting in
depressed values of the average plaquette.

For sufficiently low values of 3, the system is in
a totally disordered phase. At this point we re-
verse our steps and increase 3 back to its initial
value. This time the increase in relaxation time
near the critical point will tend to suspend P at
higher values. The net result is that near the criti-
cal B a hysteresis effect is observed. It is precisely
this characteristic of a general phase transition that
serves as the signal of the phase transition. As an
operational definition, the critical point 3, is taken
to be the point where the width in P (or S, if By is
varied) of the hysteresis curve is a maximum.

Among other questions of interest is the order of
the various transitions, which as already indicated
may have some bearing on the possibility of
quark/gluon quasiconfinement. In principle
Monte Carlo calculations permit a distinction to be
made between first- and higher-order transi-
tions.*!¢ The technique is to examine the action at
the critical line as a function of iteration from ini-
tially ordered and random configurations (see Fig.
2). If the transition is first order the two adjoining
phases (each characterized by different values of
the average action) are metastable at the critical
point. In contrast, a higher-order transition
possesses no such discontinuity at the phase boun-
dary. Given a sufficient number of iterations, the
action in this latter case will settle to a value in-
dependent of the initial configuration. Such a pro-
cedure is difficult in practice, however, because of
statistical errors. Thus only tentative conclusions
about the order of the phase transitions are given.

III. RESULTS

Figures 3(a) and 3(b) show the phase diagrams
for charge-one and charge-two Higgs scalars, deter-
mined by the hysteresis effect discussed in the pre-
vious section. All work is performed on a 4* Eu-
clidean lattice with periodic boundary conditions.

In the region of small By (<0.6), the two cases
are similar in structure, although not numerically
identical. At By =0, the scalar field decouples and
the pure U(1) gauge theory is retrieved. This
theory has a single critical point at

B=0.984+0.01, By=0, (14)
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FIG. 2. Observed behavior of the action A4 at a criti-
cal value of 8 and By plotted versus Monte Carlo itera-
tion. The system is initially placed in an ordered or ran-
dom configuration. (a) Portrays first-order behavior; (b)
higher-order behavior.

a result which coincides with more extensive com-
putations.!” (The errors quoted in this work are
subjective estimates.) The observed transition per-
sists for small values of By until a triple point at
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FIG. 3. (a) Phase diagram for the g=1 Abelian
Higgs model. First-order transitions are drawn with
solid lines, higher-order transitions are drawn with bro-
ken lines. (b) Phase diagram for the g=2 Abelian Higgs
model. The legend is as for (a).

(g=1) B=0.92+0.05,
By =0.43+0.05,

(g=2) B=0.92+0.05,
By =0.60+0.05

(15)

is reached. The transitions along this line seem
higher than first order for both values of the Higgs
charge g. '

Two additional boundaries extend outwards
from this triple point. For both the charge-one
and charge-two cases, a line of (Higgs) transitions

extends to the right for all values of 8 probed.
This result is in accord with theoretical expecta-
tion;' ~* the low-By side presumably represents the -
Coulomb (massless photon) phase of the theory. If
this identification is indeed correct, then in spite of
a nonzero vacuum expectation value for the
squared magnitude of the Higgs field, quantum
fluctuations apparently restore the symmetry of the
vacuum in this region. By the methods described
above, this transition is found to be first order for
the charge-two case. Surprisingly enough, the
same methods tentatively determine the Higgs
transition to be higher order for the charge-one
case for all values of 8 (< 1.6) examined.

In Ref. 1 and references contained therein the
Higgs transition is predicted to be first order for
sufficiently large but finite B. Thus the order of
the Higgs transition may change for large S in the
g=1 case.

The other line of phase transitions leaving the
triple point also displays a distinctly different
behavior for the two phase diagrams. For the
charge-one case, the line of apparent higher-order
phase transitions ends at the critical point:

(g=1) B=0.6+0.1, By=0.75+0.05.
(16)

Thus, as stated in the Introduction, the Higgs and
“confinement” phases of the theory are found to be
continuously connected.

The same transition line in the g=2 case does
not appear to terminate. The confinement and
Higgs phases remain distinct for all values of By
probed. The line of transitions appears first order,
as expected, since in the limit of large By the
theory approaches a Z, gauge theory, which
possesses a first-order transition.®

The existence of a deconfining transition was
also confirmed by calculating the expectation value
of the Wilson line, defined as the product of all
timelike links with spatial coordinates i =
(ny,n4,n3):

Ny
L@ =Re | ] Uz |- (17
1

ny=

where N,a is the length of the lattice in the (Eu-
clidean) time direction. Elementary manipula-
tions'® demonstrate that

(L(R))o=exp[ —N,aF], (18)

where F is the free energy of an isolated electron.
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As pointed out in Ref. 1, the Wilson line retains
validity as an order parameter for the multiply-
charged theory. Results for this quantity in the
g=2 case indicate that (L(f1)), is consistent with
zero in the confinement phase.

IV. CONCLUSIONS

The phase diagrams for the charge-one and
charge-two Higgs fields coupled to a U(1) lattice
gauge theory have been determined on a 4* Eu-
clidean lattice at zero temperature. Connections
with other such lattice models, as well as with con-
tinuum theories, have been discussed. The order of
the various transitions present in the two models
have also been tentatively classified as first or
higher order.

Perhaps the most closely related lattice models
incorporate Zy as the underlying gauge group.
This relation follows from the simple observation
that a Zy symmetry becomes a U(1) symmetry in
the limit N— . Thus the general nature of the
U(1) and Zy phase diagrams are expected to be
very similar disregarding those features which
disappear as N — . Indeed, Monte Carlo results®
for Z, and Z lattice gauge theories coupled to
Higgs in the fundamental representation (analogous
to the g=1 Higgs case), as well as for a Z¢-
gauge— Z;-Higgs system (analogous to ¢g=2) are in
qualitative accord with the results given here.

As stated in the Introduction, our results may
have relevance for the possibility of quasiconfine-
ment,” which may occur if the QCD Higgs-
confinement transition is higher than first order.
The results given here tentatively indicate
quasiconfinement may occur in a coupled QCD-
Higgs system given a number of provisos: (1) the
Higgs field lies in the fundamental representation

25

of the underlying gauge group, (2) the order of the
Higgs-confinement transition is independent of the
gauge group, (3) the constraint |¢, |>=1 is not
too serious a distortion of variable-magnitude
scalar electrodynamics [Eq. (4)]; and (4) the transi-
tion remains higher order in the continuum limit.

Points (2) and (3) are ideally suited for further
Monte Carlo exploration. For example, recent cal-
culations'® have been performed for a non-Abelian
gauge— Higgs system based on the icosahedral sub-
group of SU(2). No evidence for a Coulomb phase
was found, and the deconfining transition for the
fundamental representation was found to be higher
order, as here for the U(1) case. However, the
deconfining transition for the case of Higgs in the
adjoint representation was also suggestive of a
higher-order transition. This last result contrasts
with the first-order transition found in this work
for the (corresponding) charge-two Higgs case.
Further work on non-Abelian systems is needed to
clarify this difference.

Note added. While this manuscript was in
preparation, the authors learned of another Monte
Carlo calculation of the Abelian Higgs model on
an 8* lattice.”® The phase diagrams from that cal-
culation agreed quantitatively with results given
here.
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