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Abstract. Recent studies show that neutron spin echo spectroscopy (NSE) can reveal long-range protein
domain motions on nanometer lengthscales and on nanosecond to microsecond timescales. This unique
capability of NSE provides new opportunities to understand protein dynamics and functions, such as
how binding signals are propagated in a protein to distal sites. Here we review our applications of NSE
to the study of nanoscale protein domain motions in a set of cell signaling proteins. We summarize the
theoretical framework we have developed, which allows one to interpret the NSE data (Biophys. J. 99,
3473 (2010) and Proc. Natl. Acad. Sci. USA 102, 17646 (2005)). Our theoretical framework uses simple
concepts from nonequilibrium statistical mechanics, and does not require elaborate molecular dynamics
simulations, complex fits to rotational motion, or elastic network models. It is thus more robust than
multiparameter techniques that require untestable assumptions. We also demonstrate our experimental
scheme involving deuterium labeling of a protein domain or a subunit in a protein complex. We show that
our selective deuteration scheme can highlight and resolve specific domain dynamics from the abundant
global translational and rotational motions in a protein. Our approach thus clears significant hurdles to
the application of NSE for the study of protein dynamics in solution.

1 Nanoscale protein dynamics:

The emergence of a new frontier

Protein dynamics is essential to all aspects of protein func-
tion, such as protein stability, enzyme catalysis, and the
propagation of allosteric signals [1–3]. Protein dynamics is
hierarchical, occurring on many orders of timescales and
multiple lengthscales [4,5]. Biologically relevant protein
motions occur on timescales ranging from femtoseconds to
seconds. Neutron scattering can study dynamics from pi-
cosecond to microsecond timescales and on various length-
scales from angstroms to microns, which is an advantage of
neutron scattering compared to other experimental tech-
niques [6–11].

Nanoscale protein dynamics is emerging as a powerful
paradigm for understanding protein function and cell sig-
naling [12,13]. There is increasing evidence that the func-
tions of proteins and macromolecular machines are dic-
tated by protein dynamics on nanometer lengthscales and
on nanosecond-to-microsecond timescales [14–17]. How-
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ever, it is a challenge to study nanoscale protein dynam-
ics experimentally because of the large size and heteroge-
neous nature of protein complexes. Currently there is an
important information gap, on nanoscales, between the
dynamics occurring at atomic resolution and the cellu-
lar organization and dynamics on the much larger micron
lengthscales and slower timescales.

One technique can fill this information gap — neutron
spin echo spectroscopy (NSE) [18,19]. In particular,
NSE can determine protein dynamics on nanometer-to-
micron lengthscales and on nanosecond-to-microsecond
timescales. Recent studies show that NSE can reveal
long-range protein domain motions on nanometer length-
scales and on nanosecond-to-microsecond timescales [20–
22]. This unique capability of NSE provides new oppor-
tunities to understand protein dynamics and functions,
such as how binding signals are propagated in a protein
to distal sites. Such nanoscale protein dynamics influences
protein-ligand binding, protein complex formation, and
signal transduction.

Here we review our application of NSE to the study of
nanoscale dynamics in a multidomain signaling protein as
it forms protein complexes [20–22]. We summarize our new
theoretical framework, which allows one to interpret the
NSE data. Our theoretical framework uses simple concepts
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from nonequilibrium statistical mechanics, and does not
require elaborate molecular dynamics simulations, com-
plex fits to rotational dynamics, or elastic network mod-
els. It is thus more robust than multiparameter techniques
that require untestable assumptions. We also describe our
experimental scheme of deuterium labeling of a protein
domain or a subunit in a protein complex. We show that
this selective deuteration scheme can highlight and resolve
the specific domain motions from the plethora of global
translational and rotational motions that are hurdles to
the application of NSE to study protein dynamics in so-
lution.

2 The nature of nanoscale protein dynamics

Nanoscale protein motions obey Brownian dynamics, and
are overdamped rather than underdamped oscillations.
Protein dynamics arises as a result of thermal forces from
the collision of the protein with solvent molecules. These
thermal forces are random in magnitude and direction,
and lead to a protein undergoing a process known as Brow-
nian motion or diffusion. A particle undergoing Brown-
ian motion displays frequent changes in the direction and
speed of its movement. The world in which proteins oper-
ate is therefore characterized by the presence of a signifi-
cant amount of noise and the resultant diffusion of protein
subunits arising from thermal motion. Thermal motions
are essential for the protein to reach its equilibrium state.

The environment in which proteins act is one of
low Reynolds number (usually abbreviated Re). Reynolds
number (which was actually introduced by Stokes!) is the
ratio of the magnitude of inertial forces to that of the ther-
mal forces that arise from the viscous drag that opposes
motion,

Re = Lv/ν,

where L is a characteristic lengthscale of the protein, v is a
characteristic velocity, and ν is the kinetic viscosity of the
solvent (for water, ν ∼ 105 Å2/ns). For a large object, in-
ertial forces are more important than viscous drag. When
Reynolds number is large, forces are proportional to mass
times acceleration, according to Newton’s second law. For
a small particle such as a protein, viscous drag is more
important and Reynolds number is small and forces are
proportional to the velocity of the protein, incorporating
a concept known as the mobility tensor that we will dis-
cuss in detail below. At large Reynolds number, one has
oscillatory (underdamped) phenomena such as the ring-
ing of a bell, while at small Re (which occurs when Re is
less than about 2500), dynamics involves slow, creeping
overdamped motion.

Reynolds number is actually an imprecise concept,
usually used as a way to argue that certain terms in the
Navier-Stokes equations of fluid dynamics can safely be
neglected. Reynolds numbers for typical proteins are less
than 0.1, indicating that protein dynamics is well within
the low Re regime. Even a multiprotein complex as large
as a ribosome is still within the overdamped regime [24].

The environment of a protein has more in common
with playing badminton at the bottom of a swimming pool
full of molasses (low Re) than a cruise ship crossing the At-
lantic Ocean (high Re) [24]. For proteins, inertial forces are
less important than diffusive and viscous effects, and pro-
tein dynamics should be largely independent of the mass
of the protein (or of the relative masses of internal do-
mains). Thus, the diffusion constant of a deuterated pro-
tein should be the same as a hydrogenated protein, even
though deuterium has twice the mass of hydrogen, as we
observe. This effect is an advantage for applying selective
deuterium labeling and contrast matching in NSE.

3 A new theoretical framework for extracting

nanoscale protein dynamics from NSE

experiments

Concomitant with the rise of NSE experiments to study
protein dynamics, it becomes apparent that there is a need
for developing a theoretical strategy in order to interpret
the experimental results. The framework that we devel-
oped emerges as an extension, albeit more complex [20–
22], of ideas developed for polymer dynamics [25,26]. We
summarize the basic approach here. We begin by consid-
ering the dynamics information obtained via an NSE ex-
periment. NSE measures the intermediate scattering func-
tion I(Q, t), which is the spatial Fourier transformation of
the space-time van Hove correlation function G(r, t) [18],
I(Q, t) =

∫

V
G(r, t) exp(−iQ · r)dr, with Q the magnitude

of the scattering vector, t the time, and r the position of
a scattering center. The designation “intermediate” arises
precisely because only one of the variables of G(r, t) is
Fourier transformed. Like the static small angle neutron
scattering, in the low Q region, I(Q, t) is dominated by co-
herent scattering that corresponds to the cross-correlation
G(r, t), i.e., the probability of finding a nucleus at position
ri at time t = 0 and finding another nucleus at position rj

at time t. For a protein in solution, I(Q, t) can typically
be fit to a single exponential in time (and is difficult to
fit to more exponentials) at a given Q. A natural way to
interpret the NSE data is to examine the effective diffu-
sion constant Deff(Q) as a function of Q, which is deter-
mined by the normalized intermediate scattering function
I(Q, t)/I(Q, 0),

Γ (Q) = − lim
t→0

∂

∂t
ln[I(Q, t)/I(Q, 0)],

Deff(Q) =
Γ (Q)

Q2
, (1)

where I(Q, 0) is the static form factor.

In order to describe the dynamics of a protein in so-
lution, we utilize the remarkable Akcasu-Gurol (AG) ap-
proach originally developed to describe the dynamics of
random coil polymers [27], which is generalized to include
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Fig. 1. The relationship between force, velocity, and the mobil-
ity tensor. The translational mobility tensor gives the velocity
response (speed and direction) of a given protein domain to a
force applied to itself or to another domain.

rotational motion [20],

Deff(Q) =
kBT

Q2

×

∑

jl

〈

bjbl

(

Q · Hjl
T · Q + Lj · Hjl

R · Ll

)

eiQ·(rj−rl)
〉

∑

jl

〈

bjbleiQ·(rj−rl)
〉 , (2)

where bj is the coherent scattering length of a subunit j,
HT is the translational mobility tensor, HR is the rota-
tional mobility tensor; and kBT is the usual temperature
factor. The structural coordinates of the macromolecule,
taken relative to the center of friction of the protein, are
given by rj (note that Σrj = 0). In practice, the structural
coordinates can be atoms, protein domains in a multido-
main protein, or subunits in a multimeric protein complex,
and may be obtained from high-resolution crystallogra-
phy or NMR, or from low-resolution electron microscopy
and small angle X-ray and neutron scattering. In eq. (2),
Lj = rj × Q is the angular momentum vector for each
coordinate. The brackets 〈 〉 denote an orientational av-
erage over the vector Q, so that 〈QaQb exp(iQr)〉Q−2 =
(1/3)δabj0(Qr) + [(1/3)δab − (rarb/r2)]j2(Qr) can be ex-
pressed in terms of the spherical Bessel functions j. The
translational mobility tensor HT in eq. (2) is defined by
the velocity response v = HT F to an applied force F. The
rotational mobility tensor HR is defined by the angular
velocity response ω = HR

τ to an applied torque τ . The
relationship between force, velocity and the translational
mobility tensor is illustrated in fig. 1.

The mobility tensor provides a direct indication of the
existence of internal degrees of freedom. Equation (2) is
valid for either rigid bodies or rigid-body subunits con-
nected by soft spring linkers [20]. For a completely flex-
ible body, the rotational diffusion term (involving HR)
is absent. The rotational mobility tensor arises from the
consideration of rigid-body constraints, introduced via La-
grange multipliers or by generalized coordinates [25]. For
a rigid body composed of N identical beads, the transla-
tional mobility tensor HT is a matrix with N2 identical
3× 3 elements since HT yields the same velocity response
of, e.g., subunits B and C to a force applied to subunit
A. For an object with internal flexibility, the elements of
the mobility tensor will not be equal, so forces applied to

a given bead would result in different velocities for other
beads and the body would not remain rigid. Comparing
models of the mobility tensor from eq. (2) to experimental
Deff(Q) from NSE experiments allows one to extract the
internal dynamics of a protein or protein complex. Thus,
the key point of eq. (2) is that the effective diffusion con-
stant Deff(Q) can be calculated if we know the structural
coordinates of the protein, and have proposed a model
for the mobility tensor. NSE therefore allows us to test
models of the mobility tensor, and thereby determine and
characterize internal dynamic modes in the protein.

The angular velocity vector of the rigid object is
ω = HR

τ , with the torque τ = Σnrn × Fn. The vec-
tor force Fn on bead n is given in terms of the velocity
vn and the overall angular velocity. Thus for an arbitrary
3-component vector ω

ω = HR
Σmnrm × (N2HT )−1

mn(ω × rn). (3)

We note that eq. (3) is of the form ω = Mω for an ar-
bitrary vector ω, and thus M is the identity matrix. Equa-
tion (3) shows that for a rigid body the 3 × 3 matrix HR

can be evaluated by an inversion of a 3 × 3 matrix calcu-
lated by summing over bead coordinates n. The rotational
mobility tensor is thus entirely determined by the transla-
tional mobility tensor and the coordinates of the protein.
We adopt the simplifying assumption that all three princi-
pal spatial components of the translational mobility tensor
for each subunit are equal to ND0/(kBT ) = 1/ζ with ζ
the friction constant of a subunit, and D0 the measured
diffusion constant of the protein. Then a compact formula
of HR is given [21,22],

HR
αβ = N(D0/kBT )[Σn(δαβr2

n − rrαrnβ)]−1, (4)

where D0 is the diffusion constant of the protein or protein
complex at Q = 0, which can be measured experimentally
by PFG NMR or dynamic light scattering, and N is the
number of structural coordinates of the protein, relative to
the center of friction (note that Σn rn = 0). With eqs. (2)–
(4), an estimate of Deff (Q) for a rigid body can be made
by simply using only the coordinates and the diffusion
constant D0. There is therefore no need for a multiparam-
eter molecular dynamics simulation or an elastic network
model.

In general, both the rotational and translational mo-
bility tensors have different values for each of the three
principal axes, so that there are six independent quanti-
ties for each domain. In a multidomain protein complex,
there are generally at least 24 independent quantities for
the mobility tensor (3 translational plus 3 rotational for
each of the four subunits). These quantities are difficult to
evaluate to the precision required to compare with NSE
data [23]. By contrast, in our calculation of HR, we as-
sume that the x, y, and z diagonal components of HT are
equal for each subunit and are the only nonzero compo-
nents. Our simple approach requires neither complicated
molecular dynamics simulations nor Navier-Stokes hydro-
dynamics.

For an object with internal domain motion, compar-
ing the calculated Deff(Q) with experimental NSE data
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Fig. 2. Comparing experimental NSE results with theoretical calculations for NHERF1 alone. (A) The 3D shape of NHERF1
reconstructed from SAXS [31] using the ab initio program DAMMIN [32]. The known high-resolution structures of the PDZ1
(PDB code: 1I92) and PDZ2 (PDB code: 2KJD) domains are docked into the 3D shape, using UCSF Chimera [34]. EBD,
which overlaps with the last 13 amino acid residues that interact with PDZ2 is not marked in the graph. (B) Comparing the
experimental Deff(Q) of NHERF1 (black open square) with the rigid-body calculation (black solid line). The overall translational
diffusion constant D0 (filled black square) at Q = 0 Å−1 is D0 = 2.4 Å2/ns from PFG NMR measurements.

allows one to extract the relative degree of dynamic cou-
pling between the various components of the system. This
dynamic coupling is defined by the mobility tensor. For
example, a rigid two-domain system is described by a mo-
bility tensor,

H = H0

(

1 1
1 1

)

, (5a)

with all elements of the tensor equal, and yields (via
eq. (2)) the simple result that the translational con-
tribution to the effective diffusion constant is given by
DT

eff(Q) = kBT H0, independent of Q. By contrast, a
two-domain system with internal motion will possess a
mobility tensor,

H =

(

H1 0
0 H2

)

, (5b)

in principal coordinates. Thus, the application of equal
forces to the two domains will result in their having
different velocities, revealing internal motion. For the
case where there is one internal translational mode be-
tween subunits 1 and 2 with D1 = kBTH1 and D2 =
kBTH2 [20], the translational contribution to the effec-
tive diffusion constant is

DT
eff(Q) =

D1S1(Q) + D2S2(Q)

S(Q)
. (5c)

Here, S1(Q) and S2(Q) are the form factors of the
separate individual protein domains, while S(Q) is the
form factor of the entire protein. Orientational averages
are performed, so that, e.g., S(Q) = Σ j0 (Qr); and S(Q)
is normalized so that S(0) = N2. D1 and D2 are the
diffusion constants of individual domains.

To summarize, the calculations that we have presented
consist of rigid-body motion (including both translational

and rotational motion), and an internal mode. We stress
that, in principle, it is possible to include the effects of
arbitrary translational and rotational internal motion in
the calculation [20]. The combination of NSE and first
cumulant analysis allows one to test complex models of
the mobility tensors of the system, and extract dynamical
information about the internal motions of the protein. No
other technique can do this.

4 Applying NSE to the study of nanoscale

protein motion

The virtue of the above simple approach can be seen by
comparing our calculations with the experimental NSE
results from a cell signaling a scaffolding protein called
NHERF1 [21]. NHERF1 plays essential roles in modulat-
ing the intracellular trafficking and assembly of a number
of receptors and ion transport proteins. NHERF1 is a mul-
tidomain protein that has two modular domains, PDZ1,
PDZ2, and a disordered but compact C-terminal (CT)
domain, with three domains connected by unstructured
linkers [28–30]. The CT domain binds to the FERM do-
main of ezrin with high affinity with Kd = 19nM. We
have shown that binding to FERM-binding to the CT do-
main allosterically increases the binding affinity of both
PDZ1 and PDZ2 domains of NHERF1 for the cytoplasmic
tail of CFTR [28,31]. The PDZ1 and PDZ2 domains are
110 Å and 80 Å away, respectively, from the FERM bind-
ing site in the CT domain. The NHERF1·FERM complex
thus shows long-range allosteric transmission of binding
signals on nano lengthscales.

For NHERF1 alone in solution, the calculated rigid
body Deff(Q), using eqs. (2), (3), and (5a), agrees with
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Fig. 3. Deuteration of the FERM domain amplifies the effects of protein internal motions detected by NSE. (A) Comparing
experimental Deff(Q) of NHERF1·dFERM and NHERF1·hFERM with rigid-body calculations. Open red squares are the NSE
data from NHERF1·dFERM. Open blue squares are the NSE data from NHERF1·hFERM. Solid red and blue squares are
the self-diffusion constants D0 of NHERF1·dFERM and NHERF1·hFERM obtained from PFG NMR, respectively. The solid
red line is from rigid-body model calculations of the NHERF1·dFERM complex. The solid blue line is from rigid-body model
calculations of the NHERF1·hFERM complex. (B) Comparing experimental Deff(Q) of deuterated complex NHERF1·dFERM
and hydrogenated complex NHERF1·hFERM with calculations incorporating interdomain motion between PDZ1 and PDZ2.
The symbols for the experimental data are the same as in (A). The dashed red curve is calculated from model incorporating
domain motion between PDZ1 and PDZ2 for the NHERF1·dFERM complex. The dashed blue curve is calculated from a model
incorporating domain motion between PDZ1 and PDZ2 for the NHERF1·hFERM complex. The comparisons in (A) and (B)
show that deuteration of the FERM domain amplifies the effects of protein internal motions detected by NSE. (C) A model
representing domain motion between PDZ1 and PDZ2 in the complex. The 3D shape of the complex is reconstructed from
SANS [31]. The known high-resolution structure fragments of PDZ1, PDZ2, and ezrin FERM domain (PDB code: 1NI2) are
docked into the envelope using UCSF Chimera [34]. The arrows represent translational motion between PDZ1 and PDZ2. A
lengthscale bar of 60 Å is shown.

the NSE experimental data quite well, see fig. 2. The rigid-
body calculation uses as input only the translational diffu-
sion coefficient D0 of NHERF1 obtained from pulsed-field
gradient NMR and the “dummy atom” structural coordi-
nates [32] reconstructed from solution small angle X-ray
scattering (SAXS) [29,31].

We have compared our calculations with the NSE ex-
perimental results on two types of complexes of NHERF1
bound to FERM, see fig. 3. Figure 3A compares the ex-
perimental NSE data with rigid-body calculations. One
is the hydrogenated NHERF1 in complex with the hy-

drogenated FERM (NHERF1·hFERM), and the other
is hydrogenated NHERF1 bound to deuterium labeled
FERM (NHERF1·dFERM). As we have pointed out, at
low Reynolds number, the dynamics of a protein as seen
by NSE should not depend upon its mass, but rather
upon its size. In our calculations, we thus always im-
pose the constraint that the dynamics (and therefore
the mobility tensors) of the hydrogenated and deuter-
ated components are the same. When calculating Deff(Q)
for the NHERF1·dFERM complex, the scattering from
the deuterated component is treated as “invisible” in
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Fig. 4. A simple four-point model can well describe domain motion in the complex. (A) The four-point model represents the
NHERF1·FERM complex, with the centers of PDZ1, PDZ2, CT, and FERM domain taken from fig. 3A. (B) Comparing the
experimental NSE data with the four-point rigid-body calculations for NHERF1·hFERM (blue open squares are the experimental
data and blue solid line is the calculated data) and for NHERF1·dFERM (red open squares are experimental data and red solid
line is the calculated data). D0 of NHERF1·dFERM (solid red squares) and NHERF1·dFERM (solid blue squares) from PFG
NMR are shown. (C) Comparing the experimental data with calculations assuming inter-domain motion between PDZ1 and
PDZ2 in NHERF1·dFERM (red dash line) and NHERF1·hFERM (blue dash line). The experimental symbols are the same as
in (B). (D) Comparing the experimental data with calculations incorporating inter-domain motion between PDZ1 and PDZ2,
as well as assuming finite size form factor of spheres of 20 Å radius for the FERM domain and for both PDZ domains in
NHERF1·dFERM (red dash dot line) and in NHERF1·hFERM (blue dash dot line).

eq. (2) because the neutron scattering length density of
the deuterated component contrast matches that of the
D2O buffer background. Similar to the calculations on
NHERF1 alone, we used D0 of the complexes obtained
from PGF NMR and the structural coordinates obtained
from SANS.

As shown in fig. 3A, the agreement between the ex-
perimental NSE data and rigid-body calculations is poor
for both the NHERF1·dFERM and the NHERF1·hFERM
complexes. We have then incorporated domain motions in
our calculations, with the mobility tensor with an internal
mode between the PDZ1 and PDZ2 domains (fig. 3B). The
calculated Deff(Q) with internal motion agrees quite well
with the NSE results for the NHERF1·dFERM complex.
Nevertheless, for the NHERF1·hFERM complex, the com-
puted D0 at Q = 0 is not close to the experimental values

from PFG NMR measurements. We attribute this discrep-
ancy to large conformational variations in NHERF1 by the
unfolding of the CT domain upon binding to FERM [30],
which cannot be represented by a single structure re-
constructed from SANS. Such complications are minimal
in the NHERF1·dFERM complex because the deuterated
dFERM is “invisible” to neutrons.

A simple four-point model describes the domain motion.

The simple calculations we presented above require
only the structural coordinates and a single constraint,
the diffusion constant at Q = 0 Å−1 for the deuterated
complex, which can be measured by PFG NMR, to gener-
ate the computed Deff(Q). We further introduce an even
more simplified model that yields the same effect, and
serves to explain the Deff(Q) observed by NSE experi-
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Fig. 5. For the hydrogenated NHERF1·hFERM complex, the difference in Deff(Q) between the rigid-body model and domain-
motion models is very small, but is significantly increased in the deuterated complex. (A) Comparing the rigid-body calculation
with the domain-motion calculation in the four-point model in the hydrogenated NHERF1·hFERM complex. NSE data from
the NHERF1·hFERM (blue open squares), the four-point rigid-body model (black line), four-point model incorporating domain
motion between PDZ1 and PDZ2 (red line), four point model incorporating domain motion between PDZ1 and PDZ2 and
finite size form factor of 20 Å radius for the FERM domain, PDZ1 and PDZ2 (blue line). D0 at Q = 0 Å−1 as measured from
PFG NMR is shown in blue solid square. (B) Comparing the rigid-body calculation with the domain-motion calculation in the
four-point model in the deuterated NHERF1·dFERM complex. NSE data from the NHERF1·dFERM (red open squares), the
four-point rigid-body model (black line), four-point model incorporating domain motion between PDZ1 and PDZ2 (red line),
four point model incorporating domain motion between PDZ1 and PDZ2 and finite size form factor of 20 Å radius for the FERM
domain, PDZ1 and PDZ2 (blue line). D0 at Q = 0 Å−1 as measured from PFG NMR is shown in red solid square.

ments. The simplified model is taken by extracting four
points that represent the coordinates of the center of fric-
tion of domains obtained from the SANS data of the
NHERF1·FERM complex. These points form a triangle, as
shown in fig. 4A, with the distances FERM–PDZ2 = 80 Å,
PDZ2–PDZ1 = 59 Å, and FERM–PDZ1=110 Å. The CT
domain is taken as being halfway between the FERM and
PDZ2 domains. We include the point representing the
FERM domain with a weight factor of 3 to account for its
larger size relative to the other domains. Because it is pos-
sible to obtain the center-of-friction distances between the
domains with confidence even with low resolution SAXS or
SANS data, this model possesses fewer uncertainties than
a model based upon the molecular shape. More details of
the four-point calculations are described previously [21].

Figure 4B is the Deff(Q) of the four-point rigid-body
model, without incorporating internal domain motion be-
tween PDZ1 and the rest of the complex. Figure 4C is the
Deff(Q) of the four-point model incorporating internal do-
main motion between PDZ1 and the rest of the complex.
After incorporating internal motion, the overall Deff(Q)
from the four-point model agrees well with the experimen-
tal data for both the partially deuterated and the hydro-
genated complexes. The comparison between calculation
and experimental data improves after including the form
factor of a 20 Å radius sphere for the FERM domain and
both PDZ domains in the calculation (fig. 4D). Thus, the
NSE data is better represented by the four-point model
that includes PDZ1-PDZ2 interdomain motion than by a
model that assumes the complex is a rigid body. Further
improvement likely requires the use of methods of evalu-
ating the mobility tensors for proteins with high accuracy.

Moreover, from the four-point model calculations, we
note that Deff(Q) for the hydrogenated rigid complex and

the hydrogenated complex with internal motion are nearly
indistinguishable (fig. 5A). For the deuterated complex,
Deff(Q) obtained from the inter-domain motion model is
significantly different from that of the rigid-body model
(fig. 5B). This can be explained as due to the relatively
large contribution to eq. (2) of the effects of rotational
diffusion of the overall object, which dominates and ob-
scures the effects of internal motion when no deuteration
is performed. For the partially deuterated complex, both
the docked domain calculation (fig. 3B) and the four-point
model (fig. 5B) show that Deff(Q) of the rigid-body com-
plex is significantly different from that of the complex with
internal domain motion. Thus, deuteration of a domain or
subunit in a protein complex can amplify the effects of in-
ternal protein dynamics as detected by NSE.

5 Conclusions and perspectives

The above NSE experimental results and our calculations
indicate that NHERF1 alone behaves as a rigid body on
the timescale and lengthscales probed by NSE. Upon bind-
ing to FERM, interdomain motions between PDZ1 and
PDZ2 become activated on nanosecond to submicrosec-
ond timescales. The changes in nanoscale protein domain
motion in the NHERF1·FERM complex correspond to
long-range allostery in NHERF1, for FERM-binding to
NHERF1 allosterically increases the ligand-binding affini-
ties of both PDZ1 and PDZ2 of NHERF1 [28,31]. The
results demonstrate the unique power of NSE to detect
changes in nanoscale protein domain motions that corre-
late with protein functions, on such timescales and length-
scales that cannot be reached by other experimental tech-
niques.
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Much work remains to be done, however. The measure-
ment of the diffusion constant for a protein suffers from
the same difficulties as SAXS and SANS, namely that one
can only determine a rotationally averaged result, and not
the full 3×3 tensor. Numerical calculations do not provide
much help, as estimates of even the overall diffusion con-
stant are typically off by a factor of two or more. Moreover,
for the above reason, there is no way to compare them
with experiment. Also, structure reconstruction programs
for SAXS and SANS typically include the assumption that
the protein is convex, that is, that a line drawn between
two points in the protein does not pass outside the pro-
tein. This may be fine for very globular proteins, but can
lead to errors if the protein is an extended object, where
dynamics is likely to be important [21,22]. Improvement
in these methods would be highly useful.

As we have shown in both our NSE experiments and
calculations, the problem of global rigid-body transla-
tional and rotational diffusion can be overcome by se-
lective deuteration. Deuterium labeling of a domain in a
protein or in a protein complex significantly amplifies the
effects of internal motion detected by NSE. Thus, future
NSE experiments should benefit by utilizing our strategy
of selective deuteration to highlight the domain motions
of interest.

Selective deuteration of a subunit in a complex can be
performed by expressing the different components in hy-
drogenated and deuterated forms, respectively, and recon-
stituting the complex [21,31]. For a multidomain protein,
selective deuteration of a domain or a segment may be
achieved by the protein ligation methods for future NSE
experiments [33,34]. Additionally, many mammalian sig-
naling proteins must be expressed in insect cells or mam-
malian cells, in order to fold properly for function and for
biophysical studies. The challenge is how to express iso-
tope labeled proteins in insect or mammalian cells, at a
reasonable cost, for neutron scattering experiments.

Protein motion on nanoscales is, at best, difficult to
observe by other experimental techniques. The deuterium
labeling approach and the theoretical analyses that we de-
veloped therefore should pave the way for using NSE to
study protein motions in multidomain proteins. We ex-
pect NSE to fill an important spatial-temporal gap in our
ability to characterize protein motion and function.

This work is supported by National Institutes of Health Grant
R01 HL086496.
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