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A prescription is given for performing numerical simulations of field theory in Minkowski 
space using the Langevin equation. By introducing a weak damping term we find that the Langevin 
equations relax to their equilibrium values in a rather modest amount of time. As an example, we 
calculate the Green functions for both the harmonic and anharmonic oscillators. We study both 
analytically and numerically the convergence properties of (x 2) as a function of the volume T, the 
time lattice spacing 8 and the weak damping term e. A naive Monte Carlo strategy is also considered 
and is shown not to converge for small e. 

1. Prolegomena 

Approximate evaluation of euclidean space path integrals by Monte Carlo 
methods is commonplace at the present time [1]. However, these methods typically 
fail in Minkowski space calculations, where the most important part of the action 
is purely imaginary. Since many interesting phenomena (such as quantum tunneling) 
occur only in a Minkowski space formulation of  field theory, it is useful to comple- 
ment these standard Monte Carlo methods with techniques designed to handle an 
action with a significant imaginary part. Such techniques should also be useful for 
the study of  problems such as the treatment of resonant states or of  bottomless 
actions (which typically have no well-defined euclidean form). 

Traditionally [2], in order to make sense of a Minkowski space path integral, a 
weak damping term is inserted by the replacement too--> mo- ie ,  where m0 is the 
bare mass of  the field under consideration. The phenomena being studied then 
emerges in the limit of  infinitesimal e. 

For a practical calculation, the relevant question is how small e must be in order 
to predict this limit accurately. In a Langevin simulation the generated solution 
relaxes to its equilibrium value as e -'~ where r is proportional to the "t ime" that 
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20 D.J.E. Callaway et al. / Langevin simulations 
the simulation runs on a computer. Thus it might be anticipated that a prohibitively 
large amount of computer time is required in order to examine the limit of small 
e. However, for the cases considered here (with finite fixed volume) results obtained 
for e of order 1 for m = 1 proved sufficient to predict this limit. For a (very naive) 
Monte Carlo simulation however, the importance sampling arises solely from the 
damping term and thus this method performs poorly in the limit of  e - 10. 

In what follows a preliminary examination of  Langevin simulations in Minkowski 
space is performed. As a test problem we first consider the one-dimensional harmonic 
oscillator. In section 3 we also consider the anharmonic oscillator. Additionally a 
Monte Carlo simulation of  the same problem is used as a comparison. Relative to 
the Langevin approach, it performs poorly. 

The first problem considered is the task of estimating the path integral quotient 

r-l f~ dt' f T))x2(t') exp (i ½( 2-x2) dt) Oo(x(O))Dx 

f ~b,(x( T)) exp( i forl(:~2_ x2) dt)Oo(x(O))Dx ' 
(1.1) 

where ~ o ( X ) = - 1 / 4  exp ( - lx2) .  Since ~0 is an eigenstate of the oscillator hamil- 
tonian it follows that g2= w-1/2 S x 2 exp ( - x  2) dx =1 is the exact result. However 
numerical approaches to Langevin or to Monte Carlo methods cannot deal with 
the formal continuum path integral (1.1), and so (1.1) is replaced by its lattice-space 
analog given by 

m x 2 _ 
( X l +  1 - -  Xl) 2 

a6x 2) Oo(Xo) dxN" • • dxo 

f ' ' '  f tP*°(xN)exp( ½i~(x'+~-x̀ )26 ct6x2) tp°(x°)dxN'''dx° ' 
(1.2) 

where a = 1 -  ie, e > 0, and e represents the strength of the convergence factor 
(described earlier) inserted to give meaning to these integrals. For such a compara- 
tively simple problem it is possible to compute g2 exactly for fixed 8, e and N 
(where T = 6N),  and thus we are able to make a direct comparison of the Langevin 
equation and Monte Carlo method predictions for ~2. This is especially useful since 
it enables meaningful estimates of  the dependence of the convergence rate 8, e and 
N to be given. Besides an extensive analysis of  the harmonic oscillator problem we 
have also studied several properties of  a real-time (quartic) anharmonic oscillator 
model. 

In sec. 2 the Langevin formalism is reviewed, while in sect. 3 numerical results 
are presented. A brief comment on comparisons with Monte Carlo methods is made 
in sect. 4 and conclusions are given in sect. 5. 
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2. Langevin equation approach 
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2.1. PRELIMINARIES 

The Langevin equation scheme [3] is based originally on the fact that the equi- 
librium (stationary) distribution of  the Langevin equation 

du 
d'-'~ ( ~') = -OA( u( ~') )/ Ou + rt( z) (2.1) 

is given by 0(u)  = N -1 exp [ - A ( u ) ]  provided that A is real and N -- ~ exp ( - A )  du < 
ee. Here 7/ is a gaussian white noise chosen so that 07(~'))=0 and 07(~')~7(tr)) = 
28(z - tr). Thus the solution u(~') provides an alternate (to Monte Carlo) importance- 
sampled path for which 

io T -~ F(u(1")) d¢ (2.2) 

provides a statistical estimate of 

P=f F(u) e-a(")du/fe-A(")du. (2.3) 

The validity of this approach arises [4] because a general solution P(u, ~') of the 
Fokker-Planck equation, 

~P(u, -OuO ( O +OA(u))P(u" ou / " (2.4) 

subject to the normalized initial condition P(u ,O)=  Po(u), has the asymptotic 
behavior 

P ( u ,  ~') = N -~ e -A("). (2.5) 
T--* o o  

Indeed for typical A's of  interest the general solution admits the representation 

where 

P(u, r) = ~ P,(u) e -E." 
n = O  

= N -1 e-A(")+ ~ P~(u) -E e - , (2.6) 
n = l  

~u \ou  ou / 
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Since p ( u )  = Po(u)  (with Eo = 0) is non-vanishing it is easy to see (e.g. from Sturm- 
Liouville theory) [5] that E~ > 0 for n/> 1. 

If A becomes complex, but still such that S ]exp (-A)I  du < oo, then the foregoing 
analysis applies in many cases. In particular, the solution of (2.1) becomes complex 
although the noise remains real as before. The validity of (2.2) as an estimate of 
(2.3) still depends on the asymptotic condition (2.5), which in turn holds whenever 
Re (E,)  > 0 for n I> 1. Unfortunately this constraint on the eigenvalues is not always 
true [5], however, there is strong evidence (from perturbation theory [7] and 
numerical examples) [6] that the desired conditions hold whenever A2, the quadratic 
part of A, is already stable, i.e. when S [exp (-A2)I du < ~ .  For the problems of  
interest to us we expect the application of the complex Langevin equation to be valid. 

2.2. FORM OF THE LANGEVIN EQUATIONS 

The Langevin equation appropriate to (1.2) is an ( N +  1)-fold vector equation 
for the N +  1 complex functions of the auxiliary time zt(r), l = 0 , . . . ,  N. We use 
the notation z ( = - x +  iy) to emphasize that the solution is complex, unlike the real 
variables that appear in the integral (1.2). The Langevin equations themselves are 
then given, for 0 ~< l ~< N, by 

d 
-dfr z,( ~') = ( i /  82)[ (2 - e,)zt(  r )  - z,+,( r )  - z,_,(r)] - iaz,(  r )  

- e , z , ( r ) / a  + n t ( r ) .  (2.8) 

In this equation z_~ --- ZN+ 1 ~ 0,  eo = eta ~ 1 with all other e~ -= 0, and Bt are a set of 
independent gaussian white noises for which ( h i ( r ) ) = 0  and 071(r)7/m(cr))= 
28 t , ,8 ( r -or ) /& Observe that the lattice-space path integral (1.2) is not a trace but 
a fixed matrix element and that the latter et terms just incorporate the initial and 
final gaussian wave function. For a non-gaussian wave function, the derivative of 
In ~ would appear at n = 0, N. For the quartic anharmonic oscillator with lagrangian 
given by 

½(~2 _ x 2) _ g x 4 / 4 ! ,  g ~ O, (2.9) 

the preceding Langevin equations are changed by the addition of a term -~igza(r) 
on the right-hand side. In either case these equations are to be solved for r >  0 
subject to some initial condition zt(0) at r = 0. For T in (2.2) sufficiently great the 
estimate should be essentially independent of the initial condition. 

To solve the coupled Langevin equations we have used a simple first-order Euler 
scheme, a second-order Runge-Kutta scheme developed by Helfand [8], and another 
method which exactly integrates the non-linearities. Comments on the relative merits 
of these algorithms appear in sect. 3. 
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2.3. DIRECT EVALUATION OF XZL 

As noted earlier, for the harmonic oscillator, the continuum value of  22 is ½, but 
this will not be the case for 22 . However, it is straightforward to determine, at least 
numerically, the value of 22 for any choice of N, 8 and e. The denominator in (1.2) 
may be written in the form 

I=-- I " " " I exp (-½E Ak,xkx') rI dx,=const/(det A)I/2 , (2.10) 

where A is the ( N + I ) x ( N + I )  matrix which can be read off from (1.2). To 
determine 22L we note that 

2 2 = 2 i  d - i  ( d_~ ) -id(detA)/dct 
T dcz In I = - ~ T r  A -1 A T de tA  

Since A is tridiagonal the determinant is readily found from a three-term recursion 
relation. 

2.4. SOLUTION OF THE LANGEVIN EQUATION 

Before entering into a discussion of a discrete version of the path integral it is 
useful to solve exactly the continuum equation for the one-dimensional harmonic 
oscillator [cf. eq. (2.1)], 

d x(%e)+ex=-i  x+m2x +~7( t , r ) ,  (2.11a) 
dr d-~ 

where x is complex and 

(r/(tl, 7,) n(t2, 72) ) = 2~(t, - t2)t~(7, - z2). (2.1 lb) 

The Fourier transform of  eq. (2.11a) yields 

(x(kb 7)x(k2, 7)) = 2,riS(k~ + k2) [1 - e -2~* e '2(k~-m2)~] (2.12) 
k~-  m2+ ie 

where 

f 
x(k~, 7) = J e'kltx(t, 7) dr. (2.13) 

Eq. (2.12) shows that in the continuum limit the relaxation time is proportional to 
e -~ in Minkowski space and not (k2+ m2) -~ as in euclidean space. 
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At finite e, x(k, ~) has both  real and imaginary  parts  x(k,  T ) =  u(k, r)+iv(k, z) 
and therefore  

(u(k, r)u(k', z)) = 2 ~ 8 ( k -  k')[1 - e-2"~]/2e 

27r~(k + k')  [e -t- e - 2 ~ * ( o t  sin 2 a ¢ -  e cos 2 a t ) ]  
4 2[e2+ 2] 

(v(k, T)v(k ' ,  z)) = 2 ~ 8 ( k -  k')[1 - e-2"~]/2e 

-2TrY(k+  k') [e + e-2~¢(a cos 2a~ '+  e sin 2az ) ]  
X 2 [ e 2 +  a 2 ]  

. 8 ( k +  k') _ e_2,~( a sin 2 a t ) ]  (u(k, ¢)v(k', r))  = 2 ¢ r 2 ~  [c~ cos 2ot¢+ e , 

O~ = p 2  __ m 2 " (2.14) 

It follows that  

Re (x2(k, 7)) = (uE(k, ~-))- (rE(k, ¢)) (2.15) 

is the difference be tween two possibly large numbers  since both  u 2 and v 2 go as 
1 /e  for  large r. 

I f  the t-axis is made  discrete ( "pu t  on a lat t ice"),  the result is 

e ik"t~ ( k~, " r ) ,  x(t, ~)=¥-N/~ 

T=-N~, 

N/2 
~( k, r)= 

m=--N/2 

2zrn 2~r n 
k. - T ~ N t i n = m S  (2.16a) 

exp (--itm)x( tm, 7). (2.16b) 

Defining the oscil lator on a lattice results in the rep lacements  

ot = ( k  2 -  m 2) ~ an - -~2 [1 - c o s  (knS)] - m 2 , (2.17a) 

T 
8 ( k +  k')  ~ ~'-~ ~ - k -  (2.17b) 

It follows f rom the above  discussion that  the equi l ibr ium p ropaga to r  for  the lattice 
ha rmonic  oscil lator is 

T [ ~e2 ie ] (2.18) (x(k)x(-k))=an+i---~e T a~+e • 

In order  to present  a me thod  o f  pe r fo rming  calculat ions in Minkowski  space it 
is first necessary  to identify a suitable test p roblem.  An appropr ia te  candidate  is 
the evaluat ion of  the expecta t ion  value (x2). 
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In the con t inuum 

(X2) ~___~ f dp (2.19) 
p2 _ m 2 + ie " 

At finite e this integral can be done  exactly,  giving 

(2.20a) : 

(s c - 1)'/2(s¢ + 1) ,  (2.20b) 
4e~: 

where  

_ (e2 + m 2) 1/2 
(2.20c) 

rr/ 

( In  the sequel  m is set to unity).  Eq. (2.20b) can be expanded  for  small  e to yield 

Re (x 2) = ½ - 3 6 2 +  • • • . (2.21) 

This expans ion  is quite accura te  for e ~< 3. 
The imaginary  par t  o f  the integral eq. (2.19) can also be calculated,  

I m  (x 2) = 4~  (¢ - 1)1/2 (2.22) 

= l e - ~ E e 3 +  - . .  . (2.23) 

The  lattice versions o f  eqs. (2.20) and (2.22) are 

E N/2 
Re (x 2) = T  ,=~-N/2 (a~ + 62) -1 , (2.24a) 

Im (x 2) = 1  
N_{/2 O/n 

n=~_'N/2 (Ol~2n~ B 2) , (2.24b) 

where  a ,  is as defined in eq. (2.17a). These quanti t ies depend  u p o n  the t ime lattice 
spacing 6 as well as the " v o l u m e "  T =- N6 and the cutoff e. 

For  small  e and  fixed 6 and  T, Re (x2)~,r has a m a x i m u m  at finite e. This is 
because  if one does  not  exact ly  pick up  the pole (2.24a) goes to zero with e. The 
interesting quest ions are, "At  what  e we a p p r o a c h  the e = 0 resul t?" ,  and,  "At  what  
vo lume are we app roach ing  the infini te-volume l imit?"  In  fig. 1 we plot  at a lattice 
spacing 6 = ½, (x2(e)) for  vo lume  T = 10, 20, 40. We see that  at T = 20 we are a l ready 
getting a few percent  accuracy  at the m a x i m u m  which occurs  a round  e = 0.2. 

In  fig. 2 we plot  the a p p r o a c h  to the con t inuum limit at finite volume,  T = 20. 
We see tha t  having the lattice spacing 6 =¼, ( T =  N3) is a lmost  indis t inguishable  
f rom 6 = -~. We also again  see that  quite accura te  answers are ob ta ined  even at 6 = ½ 
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°I N=40 a--" 

0 
0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Fig. 1. Re (x 2) versus e at lattice spacing 8 = l ,  for volume T =  10, 20, 40; g =0.  

for e = 0.3. Thus  we find that  it is only  necessary  to achieve e --~ to ob ta in  numer ica l ly  

accura te  results  in the  free-field case. This requires  only  four  t imes the s imula t ion  

t ime as a euc l idean  p rob lem,  since there r -  1 / m  and  m --- 1. 

3. Numerical results for the harmonic and anharmoic oscillators 

We want  to solve eq. (2.8) for  the free-f ield case or  in the a n h a r m o n i c  osc i l la tor  

case we have an extra  - ~ i g z a ( r )  on the r igh t -hand  side. The gener ic  equa t ion  is o f  

6F Z '  8-~" T=20 

I I I I I I L I I I 
0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Fig. 2. Re (x  2) versus e at T = 20 fo r  latt ice spacings a -- ½, ~ i .  ~,g, g=O.  
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the form 

~,('r) = F , ( z ( ' r ) ) +  */,(r). (3.1) 

A first-order differential equation solver replaces this equation by (T. = nh): 

zt( n + 1) = z l (n)  + Ft ( z (  n)  )h  + ~h(n),  ~t = •lh. (3.2a) 

The noise 

~h( n ) = - - i f -  y,(  n ) , (3.2b) 

where the y t (n )  are random gaussian noise normalized to one. We use the standard 
algorithm for generating gaussian noise normalized to one. Suppose U1 and U2 are 
two independent  random numbers (uniformly distributed) between zero and one and 

31 = ( - 2  log U1) 1/2 c o s  (2"h 'U2)  , 

~2 = ( - 2  log U1) ~/2 sin (2~rU2) (3.3) 

are two independent  unit-variant gaussian-distributed random numbers (which we 
use as the y~(n)) .  Since a first-order method is accurate to order h and thus might 
require many iterations we have also used a second-order method good to order h E 

so that larger time steps could be used. 
The second-order Runge-Kut ta  [8] algorithm we used was to let 

wit = F t ( z ( n ) )  , 

w2t = Ft( z(  n ) + hw,t  + ( I t (n ) ) ,  

z l(n + 1) = z~(n) +½h(wll  + w2t) + ~ t (n) ,  (3.4) 

where again 

'~ = - ~ -  yl. 

For the anharmonic oscillator, the above two methods a r e  unstable for large g 
and small e. 

To avoid this problem we also used a two-step integration scheme which takes 
into account the non-linearities exactly. 

We have 

~,(~') = ~  [ ( 2 -  e,)zt('r) - Z,+l(W)] - iaz,(',') - e t~  ( z ) +  7h('r) -~ igz3 ( ' r ) .  (3.5) 

I f  we first integrate just the non-linear term exactly we obtain 

z~(0) 
z,('r) - x/1 + z2(O)~ig'r " (3.6) 
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Then we first set 

and finally use 
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Zojd (3.7) 
z ° l ~ - / 1  2 1. + Zold~tgh 

Znew : Zold "~ F(Zold) h + ~t, (3.8) 

or eq. (3.4) with Zold replaced by Zold, and F by F where F contains only the linear 
terms. It is clear that  to order  h the update  (3.7)-(3.8) agrees with (3.2). 

After we determined x(t ,  r),  where t =  kS, r =  nh after a certain number  o f  

iterations n = I, we then determine the fol lowing average quantities: 

where 

and 

,41 ~ A(kS ,  nh) 

k=l ,=i ( l - i ) N  ' 

x(t ,  7")= u(t, ~')+ iv(t, 7 ) ,  

A =  u, v, u 2, v 2, Re x 2= u 2 -  v 2, 

(3.9) 

Im x 2 = 2uv .  

We throw out  the first i (typically 1000) iterations. In our  simulations we start f rom 
an aligned initial configurat ion x(kS ,  O) = 1. 

We also determine the Fourier  t ransform 

N/2 
x(k ,  r) = a F. e-'k("8)x(n6, r) (3.10) 

n=--N/2 

and calculated after I iterations 

x(k, ~)x(-k, ~)= 
x(k, nh ) x ( - k ,  nh) 

,~,  ( I - i )  ' (3.11) 

which we compared  with both the real and imaginary parts o f  eq. (2.18). In solving 
the differential equat ion one must  choose Ar  = h <~ (At)  2 = 8 2. It also is true in the 

nonl inear  case that for numerical  stability as e gets smaller one needs to decrease 
h at fixed T, t$. 

For  the harmonic  oscillator we used both the Euler method and the second-order  

Runge -Ku t t a  method to solve (2.8). In general the second-order  method was five 
times faster since it tolerated a much coarser Ar  to be stable and still converge to 
the correct answer. For  example at e = 1, T = 10, 8 = 1, one required h = 0.0001 for 

the first-order method and h = 0.0005 for the second-order  method to be numerical ly 
accurate (<~ 1%). 
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For  the ha rmonic  case we chose to compare  the numerical  s imulat ion with the 

cases shown in figs. 1 and 2. That  is we studied the case T = 10 and ~ =-~, -~ as well 

as T = 20, 8 = -~. We found  that  there were different relaxation times for the measured 
qualities. (u) and (v) rapidly go to zero. Next  (u 2) and (v 2) stabilize and as expected 

are o f  order  1 /e  in magnitude.  Then Re (x 2) = (u 2 -  v 2) stabilizes. We found  that we 
needed (u 2) and (v 2) to be stable to 1% before Re (x 2) was stable to 5%. Lastly the 

m o m e n t u m  space p ropaga to r  relaxed to its equil ibrium value. 

Table 1 summarizes the results o f  the second two algorithms at various e between 
0.35 and 2. One sees that  to get similar accuracy  as we decrease e we need many  

more  iterations (increasing r and decreasing h). I f  we do not  decrease h with e, 
the iteration scheme is not  accurate. 

Similar results were obta ined f rom the first-order Euler method  but  the number  

o f  iterations needed was greater by a factor  anywhere  f rom 3-10. 

At g = 1 the first-order me thod  developed instabilities at e ~< 1.5. The second-order  

method  became unstable at g = 1 for e <~ 0.5 at N / >  40. We therefore used at small 

e, the method  outl ined by equations (3.5)-(3.8). This third method  agreed to 0.1% 
with the second-order  R u n g e - K u t t a  and had  the virtue of  being stable at all e. 

In table 1 we compare  a simulation at g = 0 with one at g = 1 to show that the 

number  o f  iterations needed for 10% numerical  stability was quite similar. One 

TABLE 1 

A c o m p a r i s o n  o f  s i m u l a t i o n s  a t  g = 0 a n d  g = 1, N = 40, 8 = ¼, T = 10 fo r  

(x  2) as a f u n c t i o n  o f  e 

(x 2) (x% (x% 
exac t ,  g = 0 s i m u l a t i o n ,  g = 0 s i m u l a t i o n ,  g = 1 

e = 2 0.306 

I = 15 000  I = 25 000 

0.305 ± 0.005 0.28 ± 0.01 

h = 0.001 h = 0.0005 

e = 1.5 0 .334 

I = 20 000  I = 30 000 

0 .332 ± 0.005 0.327 ± 0 .010 

h = 0.0005 h = 0.0005 

e = 1.0 0 .390 

! = 35 000 I = 50 000 

0.385 ± 0 .010 0.349 ± 0 .010 

h = 0.0003 h = 0.0003 

e = 0.5 0.4825 

I = 100 000 1 = 200 000  

0 .476 + 0 .020 0.459 ± 0.03 

h = 0 .0002 " h = 0.0001 

e = 0.35 0.35 

! = 120 000  I = 250 000 

0.38 ± 0.03 0.43 ± 0.03 

h = 0 .00015 h = 0.0001 

I = n u m b e r  o f  i t e r a t i ons ,  h = Az. lh  = ":. 
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0 , 5 -  

0.4 

/k 0.3 
¢4 
X 

~/ 0.2 

o.[ 

o.o, 
o.o 

I o ~ = ~ ,N=40  

~ . . .  .~:-~ ,N:80 
o . i ,  

~ T=IO 

I 1 I I 
0.5 1.0 1.5 2,0 

Fig. 3. Simulation for R e ( x  2) versus e. g =  l,  T =  10, for 8 =¼, ~ ( T =  N~). 

needed (in general) relaxation times that were 1-2 times greater for the anharmonic 

case to obtain similar accuracy. 
In fig. 3 we present the numerical results for Re (x 2) versus e at different volumes 

for the value of  g = 1. We notice these curves are quite similar to their free-field 

theory counterparts. We have also run a euclidean space Langevin simulation for 
(x 2) at e = 0, T =  10 and obtained (x 2) = 0.43 +0.03. We see that the Minkowski 

space simulation at e = 0.5 is consistent with this result. 

In order to perform these calculations we used both a VAX 780 and a Cray XMP. 

On the Cray a simulation at large e i> 1.5 took around 20 seconds of CPU time. To 

get accurate results at e = 0.35, g = 1 took 20 minutes of CPU time on the Cray. No 
attempt was made to optimize the calculation. For calculations of  the mass, using 

Fourier space techniques are expected to drastically shorten the computation time. 

4.  N a i v e  M o n t e  C a r l o  s i m u l a t i o n  

There are, of course, numerous other algorithms for the simulation of  quantum 

systems. Most notable amongst these are Monte Carlo methods (reviewed in ref. 
[9]) and microcanonical or "molecular dynamics" techniques [10]. As the primary 

focus of this article is the elucidation of the Langevin approach, only a brief 
comparison with the simplest Monte Carlo method is made. 

The details of the Monte Carlo calculation are as follows. First, the real and 

imaginary parts of the action are separated: 

S = SR+ iSi (4.1) 

with [recall eq. (1.2) above]: 

N 
2 1 2 2 SR=---½e~ ~ x, +~(x, +x~) ,  (4.2a) 

i=l 
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N 

2, (4.2b) s,-=!E E x, 
28 <i.j> i=1 

where N, 8, and e are parameters, and the notation (i,j) refers to all nearest-neighbor 
pairs i, j summed once. 

Expectation values of functionals O (corresponding to operators O) in the 
ensemble governed by eq. (4.1) are given by 

(0) = (0  e'S~)R (4.3) 
(eiSi)R ' 

where 

f Dx exp (--SR)O' 

(O')R = f D---~ ex---p (--SR------~ " (4.4) 

The expectation values of eq. (4.4) are generated easily, since random numbers 
obeying a gaussian distribution can be generated rapidly from the closed-form 
expression eq. (3.3). 

A sample calculation with N equal to 50 and 8 equal to 0.25 was performed. For 
e equal to 100, less than one hundred updates of the entire system were required 
to give a value of 

--1 (,~1 x2) N (4.5) 

correct to one digit. This same level of accuracy required on the order of one million 
updates for e equal to 50. These results suggest that the desired limit of small e is 
at best obtainable with extreme difficulty by this most naive Monte Carlo method. 
This is as it should be, for Monte Carlo methods are predicted upon the idea of 
importance sampling, and the limit of small e is the limit in which this importance 
sampling is least effective. 

5. C o n c l u s i o n s  

In this paper we have studied analytically how the lattice free-field propagator 
behaves as a function of T (the volume of space time), 8 (the lattice spacing) and 
e (the Feynman cutoff). We found that at fixed finite volume an excellent approxi- 
mate to the continuum can be had for moderate e. A Langevin simulation relaxed 
to the known results with relaxation time ~-oc 1/e as predicted by analytic results. 

For the anharmonic oscillator case we found that the simulations had the same 
behavior as in free-field theory in that the relaxation time was still of order 1/e and 
for finite volume the optimum e was similar to the free-field case. This demonstrates 
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that Langevin simulations for interactive field theories in Minkowski  space are 
possible with two extra costs over euclidean simulations. First, for the propagator 
the relaxation time is 1 /e  independent o f  momenta  instead of  1 / ( p 2 +  m2). Second, 
one must do simulations at several e and use that e which maximizes (&2) to 
calculate the various Green functions. 
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