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A general method for calculating block renormalized coupling constants within the framework of the Monte Carlo re- 
normalization group is presented. The method is applicable for any values of the couplings and in particular for those far 
from the critical point. A new technique for evaluating separately the derivatives of the block renormalized couplings is al- 
so discussed. The utility of these methods is demonstrated on the two-dimensional Ising model, where knowledge of the 
exact critical point in the multiparameter space of coupling constants results in improved values of the critical exponents. 

1. Prolegomena 
The Monte Carlo renormalization group is known 

to give accurate and reliable information about the 
critical properties of  statistical systems [ 1 - 4 ]  ,1 and 
lattice gauge theories [5,6]. It is a combination of  
the principles of  Monte Carlo simulation [7] with 
those of  the real-space renormalization group [8]. 
The system under consideration is divided into 
"blocks", and a smaller number of  block variables 
are defined by averaging in some fashion over the 
original "site" variables. By studying the way in which 
the site hamiltonian (or lagrangian for lattice gauge 
theories) "flows" into the block renormalized hamil- 
tonian the critical properties of  the system can be de- 
termined. 

One difficulty of  the Monte Carlo renormalization 
group procedure is that while it is known [2] how 
to obtain the derivatives of  the renormalized couplings 
with respect to tile original couplings, previously no 
general method for determining the couplings them- 
selves has been presented. A popular method original- 
ly proposed by Wilson [5] works only in the neigh- 
borhood of  the fixed point. 

Here we present a procedure which can be used to 
calculate the block renormalized couplings (and hence 

4:1 The Monte Carlo renormalization group is reviewed in 
ref. [4]. 
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the renormalization group trajectory) even far from 
the critical point. An advantage of  this technique is 
that it allows one to determine all critical points and 
flows in the general parameter space without any a 
priori knowledge of  the critical properties of  the sys- 
tem. A more practical advantage is obvious: by per- 
forming the simulations at the actual critical point in 
the general space of  interactions (rather than in the 
usual projected space) the accuracy of  the critical ex- 
ponents can be improved. The method is presented 
below in detail. 

2. General description of the procedure 
Consider a system of  site variables {~b} governed 

by a site hamiltonian H {~b}. A "renormalized" or 
block hamiltonian H '  {q~') is determined from the site 
hamiltonian by the use of  an appropriate projection 
operator P[  {~}, (q~'}], 

e -H'(~ '} = Tr{q~}P[ {q/}, {~b}] e -H{~'}, (1) 

where the trace (or functional integral) is only over 
the site variables {q~}. The requirement that the re- 
normalization group transformation preserve the parti- 
tion function of  the system imposes the constraint 

Tr(¢}~'[ (¢},  (~)l = ~. (:)  

The projection operator is otherwise arbitrary. 
For the sake of  simplicity the projection operator 
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is usually taken to be a product of  delta functions, 

Pt{q~'}, {~b}] = 1-1 8 [~b~ - gi {~b}], (3) 
i 

where the gi {~b} are some appropriately chosen func- 
tions of  the {~b}. However we find it very advantageous 
to use instead a "smeared" projection operator, 

P[{$'},  {q~}] =N03) I-[ exp[-~(~b~ _ g i { , } ) 2 ] ,  (4) 
i 

where N(/3) is a normalization factor which depends 
only on/3. With the use of  the projection operator of  
eq. (4) it is easy to do a simulation while holding 
some of  the {4/} fixed. It is more difficult to fix some 
of  the {~'} when the projection operator of  eq. (3) 
is used instead because of  the problems associated 
with inverting a delta function. For sufficiently large 
t3, the two projection operators are of  course equiva- 
lent. 

It is worth emphasizing the utility of  the choice 
eq. (4). The advantage of  this "smeared" projection 
operator is that it allows each of  the variables {~b'} 
separately either to be generated [by first producing 
a configuration {q~} and then generating one or more 
of  the {q~'} using eq. (4)] or to be fixed beforehand 
[in which case the appropriate term(s) in the expo- 
nential eq. (4) are treated as part of  the site hamil- 
tonian H{4~} when the {4~} are generated].  Some of  
the block variables can be fixed in this fashion while 
others are allowed to fluctuate. 

With the above description in mind, our prescrip- 
tion for calculating the block renormalized couplings 
is straightforward. First all of  the block variables {~b'} 
but one (denoted by 4~0) are fixed in a fashion pre- 
scribed below. The remaining variable is allowed to 
fluctuate with a distribution given by eq. (4). 

Both the site and block hamiltonians can be expand- 
ed in terms of  appropriate basis functions {S} and 
coupling constants {K} and {K'} respectively as fol- 
lows: 

H' {,p'} : Z ;  K '  s H = Z;  K s s 
(5a,b) 

The {qS~, i :/: 0} are fixed in such a fashion that all but 
a small number of  the {S} (e.g. one, denoted by SO) 
which involve q~) are zero in the block system. Then 
the probability that the lone fluctuating variable as- 

sumes the value 4~(3 is proportional to 

p(4~0) cx exp [K 0 S O {~'}],  (6) 

which depends only on the chosen coupling K~ and 
the known function S O {$'}. It is thus a trivial matter 
to determine K~ by measuring the function p($~)). In 
this fashion all of  the couplings of  the theory can be 
evaluated systematically. 

It is of  course not always possible to choose a single 
block configuration in which all of  the {S} but the 
chosen one are zero. However, by suitable combina- 
tions of the results from several block configurations 
it is possible to separate the couplings. Additionally 
in practice only a small number of  couplings are large, 
and it is often possible to separate these with a single 
block configuration. A specific example of  this meth- 
od is described below. 

3. Application to the two-dimensional Ising model 
3.1. Method. The formalism described in the pre- 

ceding section is now applied to the two-dimensional 
lsing model. In this case the spin variables {o} and {o'} 
only take on the values +- 1. Thus the only interactions 
present are those between a spin and one or more of 
its neighbors (whether near or far); self-interactions 
are absent. A point of  notation is in order: In fig. la 
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Fig. 1. (a) Schematic diagram at a spin (at O) and its first 
through fifth neighbours; (b) Schematic diagram showing 
basic block spin configuration for cancelling even-spin inter- 
actions. 
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the first (or "nearest") neighbors, second neighbors, 
etc. of  the spin at point 0 are shown. The {S} of  eqs. 
(5) are taken to be the sum o f  the interactions be- 
tween the spin at point 0 and each of  the classes of  
neighbors (including of  course interactions with up 
to the total number of nth neighbor spins). In partic- 
ular we adopt the notation that K 1 and K 2 are respec- 
tively the nearest neighbor and second neighbor two- 
spin couplings, while K 3 is the four-spin coupling con- 
sisting of  a symmetric sum of  products o f  a spin and 
three of  its four nearest neighbors. 

The projection operator eq. (4) for the Ising mod- 
el can be written in the form, 

t 

P[{o ' ) ,  {o}] = 11 exp[t3oig i {o}]/2 cosh/3. (7) 
i 

In the calculations described below, the function gi {o} 
is determined by the so-called "majority rule", that is, 
& equals plus or minus one if the sum of the spins in 
a block is positive or negative respectively. For this 
calculation the lattice is divided into standard square 
blocks with three site spins on a side. The value 13 = 10 
was chosen, however, using larger values of/3 did not 
make a significant difference in the results. 

The method of  calculation for the block renormal- 
ized couplings is as follows. One block spin (depicted 
as 0 in fig. lb)  is generated with a relative probability 
exp[/3o~g 0 {o}]. The rest o f  the block spins are fixed 
in such a fashion as to cancel as many of  the interac- 
tions as possible, leaving only the ones of  interest. 

This separation is easy to perform. For simplicity, 
consider first the case in which the site hamiltonian 
has only interactions involving an even number of  
spins. Thus the block hamiltonian also only contains 
even interactions. If  the block spins surrounding the 

t 

fluctuating block spin o 0 are chosen in the fashion 
depicted in fig. lb  except for the four nearest neigh- 
bor spins (numbered 1 in fig. 1 a), then K] and K ;  
can be determined. The four nearest neighbor spins 
are first all set equal to one, and the number N+(++++) 

t 
[N_(++++)] of  times that the block spin o 0 takes on 
the value +1 [ -1  ] is recorded. The other block spins 
(the "background") are fixed in the pattern fig. lb. 
The above procedure is repeated for the case in which 
three of  the four nearest neighbors are set to +1, while 
the fourth is set to - 1 .  In this fashion N+(+++-)  and 
N_(+++- )  are calculated. The couplings K] and K~ 
are then determined by solving the equations, 

t t N+(++++)/N_(++++) = exp (8K 1 + 8K3), 

N+(+++-) /N_(+++-)  = exp (4K' 1 - 4K3). (8) 

In practice we found that K 3 is negligible (i.e. K 3 
< 0.01) and so it was dropped from the calculations. 

Corrections to eqs. (8) arise from the fact that the 
background pattern of  fig. Ib actually does not can- 
cel all other interactions, although it certainly does 
cancel an enormous fraction of  them. For example, 
a four-spin interaction involving one nearest neighbor 
and two diagonally opposite second-neighbors is not 
cancelled by this prescription. This coupling is not 
particularly large in the case under consideration. If  
it was large, it would be a fairly simple matter to in- 
clude three interactions in eqs. (8) and thus separate 
the effects o f  this new coupling. It is in fact a normal 
assumption of  the renormalization-group formalism 
that only a small number of  operators need to be con- 
sidered in a calculation (provided that a sensible pro- 
jection operator is used). 

In a similar fashion the second neighbor coupling 
K~ is determined. The block spins are arranged in the 
pattern fig. lb except for the four second neighbor 
spins (numbered 2 in fig. 1 a). The number of  times 
N+ [N_] that the spin o 0 assumes the value +1 [ - 1 ]  
is again recorded and K~_ is given by 

K'  2 = ~ln[N+/N ].  (9) 

A more accurate determination o f  the coupling 
K~ can be made by arranging the nearest neighbors 
in a pattern ( + + - - )  rather than the ( + - + - )  pattern 
of  fig. lb. This latter configuration eliminates a four- 
spin coupling involving two nearest neighbors and one 
second neighbor. For our calculation this second con- 
figuration was used, although the additional accuracy 
proved irrelevant. 

In order to determine the critical exponents of a 
theory the derivatives of  the coupling constants are 
evaluated at a fixed point. These derivatives can be 
evaluated using the standard method [2] (discussed 
below) or by a method analogous to the one used 
above for finding the block renormalized constants. 
The second method allows the derivatives of  the cou- 
plings to be evaluated at the same time as the renor- 
realized couplings themselves. This new technique is 
presented immediately below. 

Consider for example the calculation of  the deriva- 
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fives of the block second nearest neighbor coupling 
K~ with respect to the site couplings (K}. The block 
spins are set to the values of fig. lb,  except for the 
four nearest neighbor spins, which are set to one. 
Then (since the derivatives of  the four-spin coupling 
are negligible) it follows by differentiating eq. (1) 
that 

OK' 2 
OK -g-' [(S)+ - (S a)_ ], (10) 

a 

where (Sa) + [(Sa) ] is the expectation value of the 
component a of  the hamiltonian, with the average 
taken only over those configurations where the spin 
o~ equals +1 [-1 ]. With this example in mind it is 
easy to develop the formulae for the derivatives of 
the other couplings. Note that by adding and sub- 
tracting formulae like eq. (10) each derivative can be 
separately calculated. 

For completeness the standard method [2] of cal- 
culating the derivatives of coupling constants is dis- 
cussed. These derivatives are determined by measuring 
the expectation values, 

Cab = ([S  a - (Sa)] [S b - (Sb)l) (1 la) 

and 

Cab = (IS '  a - (S'a) ] IS  b - <Sb) ] ). (1 lb) 

In practice, only a small number of the elements of 
the matrices C and C' are measured, i.e., a and b range 
from one to some number Neorr.  

The derivatives of the block renormalized couplings 
are determined by the solution of the matrix equa- 
tion, 

C = D C ' ,  (12a) 

where 

Dab = OK'a/OK b . (12b) 

The critical eigenvalues are then determined by the 
diagonalization of the matrix D, using only the first 
(Neigen) 2 elements. 

In our review of this latter technique, we have made 
explicit the difference between the number of  correla- 
tions measured, Ncorr , and the number of elements, 
Neigen , used in the diagonalization. The point is the 
following. With our procedure for calculating deriva- 
tives [as defined in eq. (9)] it is possible in principle 

to evaluate separately a number of derivatives with- 
out calculating the derivative of every block renor- 
malized coupling with respect to every site coupling. 
In the standard method [2], this luxury is note per- 
mitted - in order to find the matrix D in principle 
all of the elements of the matrices C and C'  must be 
known. 

In practice what we have done to compare the two 
methods is to increase the number Ncorr of measured 
correlations until the first (Neigen) 2 elements of D 
are stable against the inclusion of additional interac- 
tions. The eigenvalues of this stable submatrix are 
then computed. This procedure provides the fairest 
comparison between the two methods if the Ncorr 
- Neigen remaining interactions are cancelled in the 
new method. Such is indeed the case for the compari- 
sons made below. 

Given the renormalized couplings and derivatives 
at some point it is a simple matter to locate the fixed 
point {K*} in a recursive fashion by use of the first 
order Taylor series expansion, 

(K' - K 2) (OK' /OK ) - (13) 

which is valid near the fixed point. The known values 
of {K} and {K'} and their derivatives are inserted, 
and eq. (13) is solved for {K*}. At this approximate 
value for K* the process is repeated. Typically the 
fixed point is reached within one or two iterations 
from a reasonable starting point. 

At the fixed point the critical exponents are cal- 

K2 

02 

0A 

-01 

-02  

01 K~ 

Fig. 2. Qualitative plot of flow diagram for the two-dimen- 
sional Ising model in the space at nearest neighbour (K1) 
and second neighbour (K2) couplings. 
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Table 1 
Thermal exponent YT of the two-dimensional Ising model, as calculated by the two methods described in the text (exact value 
YT = 1). 

K = (0.44068,0.) K* = (0.32, 0.07) 

new method (2 × 2) 0.94 0.99 
standard method (7 × 7 ~ 2 × 2) 0.95 0.96 

culated by  diagonalizing the appropriate derivative 
matrix.  For example,  if X e is the largest eigenvalue of  
the derivative matr ix D of  even-spin interactions, the 
thermal exponent YT is given by 

YT = In (~,e)/ln 3. (14) 

The factor 3 arises because it is the scale factor for 
the block transformation. For the two-dimensional 
Ising mode l , y  T is exactly one. 

3.2. Results. In the exercise we have chosen, the 
two-dimensional Ising model with majori ty rule block- 
ing, a reasonable thermal exponent  can be obtained 
by considering only the couplings K 1 and K 2. The 
resulting flow diagram is plot ted in fig. 2. Note that 
there is a fixed point  at K* = (0.32 -+ 0.01,0.07 -+ 0.01). 
Here the errors are assessed by comparing the results 
of  a block configuration with those of  its negative. 
These values are consistent with those given in 
ref. [10].  

The calculations were performed using a square 
lattice with 45 sites on a side. Correlations were mea- 
sured over 90000 updates of  the entire lattice after 
equilibration for 10000 updates.  At the Ising model 
fixed point ,  K ~ (0.44068,0.) ,  the value of  the ther- 
mal exponent was found to b e y  T ~ 0.94. 

At the improved fixed point,  K* ~ (0.32,0.07) ,  
the thermal exponent  was found to be YT "~ 0.99. 
Note that knowledge o f  the truee fixed point can re- 
sult in an improved value of  the critical exponent  (re- 
call that the exact value is YT = 1). For  this calcula- 
t ion,  the 2 X 2 matr ix D involving derivatives o f K '  1 

t 

and K 2 was determined by our new method.  As can 
be seen in table 1, these results are equivalent to those 
obtained by the standard method [2] using Neorr = 7 
and Neigen = 2. In the latter case the additional cou- 
plings involved included the third neighbor two-spin 
coupling and several four-spin couplings with two 
first neighbors and a second neighbor. All of  these 

extra five couplings are cancelled in our new proce- 
dure; thus (as discussed above) the comparison is fair. 

4. Conclusions 
We have presented a method which can be used to 

find fixed points and coupling constant trajectories 
within the framework of  the Monte Carlo renormali- 
zation group. The method is applicable to a wide 
variety of  models, and can be used to determine tra- 
jectories even far from the critical point .  Previous 
methods (see, e.g., ref. [5] ) only determined trajec- 
tories in the neighborhood of  a fixed point.  

A new method for extracting directly the deriva- 
tives of  the block renormalized couplings with respect 
to the original (site) couplings was also discussed. It 
was shown that knowledge of  the critical point  in the 
mult iparameter space leads to an improved value o f  
the thermal exponent ,  at least in the case considerd. 
We are presently applying the method to a Monte 
Carlo renormalization group study of  ~b 4 field theory.  

Note  added. At the conclusion of  this research we 
learned of  recent work [ 11 ] on a different method 
to extract  block renormalized couplings. 

It is a pleasure to thank G. Parisi for useful con- 
versations. 
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