VOLUME 49, NUMBER 9

PHYSICAL REVIEW LETTERS

30 AucusT 1982

Technology, Cambridge, Mass. 02139.

!G. Goldhaber et al., Phys. Rev. Lett. 37, 255 (1976)
I. Peruzzi et al., Phys. Rev. Lett. 37, 569 (1976).

P, A. Rapidis et al., Phys. Lett. 84B, 507 (1979).

3C. Baltay et al., Phys. Rev. Lett. 41, 73 (1978).

‘D. Andrews et al., Phys. Rev. Lett. 44, 1108 (1980).

5G. J. Feldman et al., Phys. Rev. Lett. 38, 1313
(1977).

8The momentum resolution of the spectrometer is
given by (Ap/p)2=(0.012p/GeV)%+ (0.006/8)%, where
is the particle velocity, v /c.

"With the same technique of cutting on the D**+-D°
mass difference, we also see a signal in the mode D°
—K “w*r*n~, However, the signal-to-background ratio
is much worse than the case D"—~K 7+ due to the in-
creased number of random combinations.

8D. Andrews et al., Phys. Rev. Lett. 45, 219 (1980).

9Fits to a Gaussian plus smooth background were also
done to the Km mass spectra for each z bin with the
D" mass and width fixed at their measured values (see
Fig. 1). The fits gave excellent agreement with results
of direct subtraction of A mass spectra like that of

Fig. 2.

!UR. H. Schindler et al., Phys. Rev. D 24, 78 (1981);
M. W. Coles et al., Phys. Rev. D 24, 78 (1981); M. W,
Coles et al., Stanford Linear Accelerator Center—Law-
rence Berkeley Laboratory Report No. SLAC PUB-
2196, LBL 14402, 1982 (to be published).

UThe charged D* acceptance was calculated using
Monte Carlo events of the type e*e” —~D* X, with the
D* decaying into Kmm. The acceptance is small (about
3%) for z < 0.5 because the soft pion from the decay
D*+*—Dr+ does not penetrate the tracking chamber.
The acceptance is 18% for 0.5<z < 0.6, and is 30% for
0.6<z <1.0. The systematic uncertainty in these ac-
ceptance calculations is about 15%.

12The continuum hadronic cross section at W= 10.4
GeV is 3.76+ 0.07, where the error is statistical only
and we have not made any radiative corrections.

3R, D. Field and R. P. Feynman, Phys. Rev. D 15,
2590 (1977); V. Barger, T. Gottschalk, and R. J. N.
Phillips, Phys. Lett. 70B, 51 (1977); J. B. Bjorken,
Phys. Rev. D 17, 171 (1978); H. Georgi and H. D.
Politzer, Nucl. Phys. B136, 445 (1978).

Microcanonical Ensemble Formulation of Lattice Gauge Theory

David J. E. Callaway®® and Aneesur Rahman®

b)

Avgonne National Labovatovy, Avgonne, Illinois 60439
(Received 26 April 1982)

A new formulation of lattice gauge theory without explicit path integrals or sums is
obtained by using the microcanonical ensemble of statistical mechanics. Expectation
values in the new formalism are calculated by solving a large set of coupled, nonlinear,
ordinary differential equations. The average plaquette for compact electrodynamics cal-
culated in this fashion agrees with standard Monte Carlo results. Possible advantages
of the microcanonical method in applications to fermionic systems are discussed.
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The formulation of gauge theories on a lattice
has led to great progress in understanding rela-
tivistic quantum field theory. The use of the
lattice spacing as an ultraviolet cutoff allows the
calculation of relevant physical quantities with-
out resorting to perturbation theory, which by
itself is severely limited in computational possi-
bilities.

In the usual approach’ to lattice gauge theory
the central assumption is that expectation values
of functionals O of fields {¢} on a finite Euclid-
ean lattice can give physically meaningful re-
sults without having to go to the continuum limit,
With use of an action ${ ¢}, with a finite number
N of fields { ¢} and suitable boundary conditions,

such expectation values are defined by
(Oiagice =27 [ D@ O plem 10T,
Z=[pge-slel, (1)
Jpg=fdg fag, - [de,.

The continuum limit is obtained as N increases
without bound and the lattice spacing approaches
zero. As discussed below, the standard lattice
path-integral formalism, Egs. (1), is isomorphic
to a canonical ensemble, familiar from classical
statistical mechanics.

We propose an alternative formulation for lat-
tice gauge theory. In this new formalism (here-
after referred to as the microcanonical ensemble)
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an explicit path integral or sum does not appear.
Instead expectation values are calculated by solv-
ing a set of N coupled, nonlinear, second-order,
ordinary differential equations.

Our results show that for N = 100 the two en-
sembles give essentially identical results for the

average plaquette in a U(1) gauge theory. Further-

more, we believe that in certain instances the
microcanonical method may be superior to the
conventional path-integral method, for which
Monte Carlo techniques are traditionally used?®
to perform the integrations. The two methods
are now compared by use of a particular example.
The standard formulation™® of compact electro-
dynamics [i.e., a lattice U(1) gauge theory] util-
izes the action

S=pV with B=1/g.2, (2a)
V=2 Re(1=U, , Uy spwUnivp Upn ™) (2b)
U, . =exp(io, ), (2¢)

where g,? is the bare lattice coupling constant
and the sum defining V is over all elementary

plaquettes in d dimensions. The {¢} are real
gauge fields associated with each link of the lat-
tice; the link U, , connects the lattice point » to
its nearest neighbor in the direction u.

Any quantity independent of all { ¢} can be
added to the action S{¢} without affecting the
expectation value of any functional of the {¢}.
Hence, it follows that

<U>]anice = <0>canon EZCGJ)OH—I jﬂ)()ujﬁ[)pe'eﬂt){q)},

Z canon EJ‘ :D(pf:Dpe-BH ’

Jop=Jdp, fap,... [ dpy, (3)

N
H=T+V, T=3 2 pr.
i=1

The {p} and {¢} are independent variables on
the lattice.

An obvious isomorphism with classical statis-
tical mechanics arises on making the identifica-
tion

dqﬂn'“/dT =Pn.u (4)

if we introduce a new “dimension” or artificial

variable 7. A Lagrangian formulation of a Euclid-

ean quantum field theory embedded in d discrete

dimensions [Egs. (1) and (2)] is thus mapped to

a “Hamiltonian” formalism* embedded in d dis-

crete dimensions and one continuous dimension,
Note that H is invariant under local gauge trans-
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formations
Uyt Wo Uy Woay ' (5)

provided that the W,, elements of the U(1) gauge
group, are independent of T,

Equations (2) and (3) define a canonical ensem-
ble with kinetic energy T, potential energy V, and
temperature B8~!. This ensemble represents the
states of a system (governed by a Hamiltonian H)
in contact with a heat bath at fixed temperature
B

A microcanonical ensemble, on the other hand,
describes a system in thermal isolation and
hence the “energy” H[{¢},{p}] of the system is
constrained to be a fixed value £, while the “tem-
perature” B! is defined to be the average kinetic
energy (suitably normalized).® Each coordinate
evolves in T according to Hamilton’s equations,

Loy e}
2 _pn.u—_ . (6)
ar 3¢,

Formally, expectation values in the microcanon-
ical ensemble are written as

<O>micro

EZmicro—lj;i=E:D(p:Dp O[{(ﬂ},{P}], (73)

with
ZmicroEJ}{=E Dy Dp. (o)

The integrals in Eqs. (7) are over the (2N - 1)-
dimensional hypersurface of constant “energy,”
H{{ ¢}, {p}]=E.

The expectation value of any functional of the
{¢} and {p} can be calculated by use of the { ¢}
and { p} generated along the trajectory given by
the solution of Eqs. (6) in the 2N-dimensional
phase space { ¢, p}. Any expectation value is
thus given by

{0 micro = lim -17- fOT o{ (), p(7')}ar’, (8)
To
and is a unique function of E.

The equivalence of Eqs. (7) and (8) follows from
a vital assumption of ensemble theory known as
the principle of equal weight.® This principle
assures us that for a given E, the trajectories
given by the solution of Eqs. (6) cover the (2N —1)-
dimensional constant-energy surface in phase
space {¢,p} with equal density., The additional
assumption that all expectation values of a physi-
cal system can be computed in either ensemble
is discussed and partially proven by Fisher,”
Griffith,” Van der Linden,” and Lebowitz, Percus,
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and Verlet.®

The average kinetic energy (7) which defines
the analog “temperature” (i.e., the bare lattice
coupling constant) along a trajectory is given by

862 =B71=(2/Ningep) { T micro - (9)

The significance of Ny, i8 discussed below.
Another quantity of interest is the average action,

<S>micro=B<V>micro . (10)

As regards N inep, recall thatin a lattice gauge
theory there is a local gauge symmetry with no
immediate physical relevance. Because of this
symmetry there are only Niyge, <N linearly inde-
pendent variables among the {¢}. In the thermo-
dynamic limit (N - «) the number of linearly inde-
pendent variables in d dimensions for the U(1)
gauge theory is

Nin&p:[(d"l)/d]N:(d_l)Ld ’ (11)

for a hypercube with L lattice sites along each
side.

General methods exist® for dealing with redun-
dant variables, familiar from classical mechan-
ics as ignorable cyclic coordinates. One way to
remove these ignorable coordinates is to impose
constraints by choosing a gauge. Choices such
as the axial gauge (n L,A“ =0) or the Lorentz gauge
(8,A*=0) result in a set of N/d constraints on a
lattice of N links in d dimensions. The following
course seems more appropriate here.

By a suitable linear transformation on the vari-
ables ¢, to new variables &;, Egs. (6) become

£,=d?,/dr?=f,({¢}), i=1,2,...N, (12)

with
ft({g})=09 Nindep<i§N- (13)

It then follows that in solving Eqs. (6) if the initial
condition ¢, , =0 at 7=0 is imposed, the £, for

N igp <t <N will equal zero for all 7. As a con-
sequence in the average in Eq. (9) the correct
divisor is N4, and not N, This procedure is
analogous to determining the temperature of a
system of particles by measuring the average
kinetic energy of each particle in the rest frame
of the system (equivalent to imposing d con-
straints).

The results of numerical calculations performed
in each of the two ensembles are now compared
for the U(1) lattice gauge theory. These calcula-
tions were performed in four Euclidean dimen-
sions on a periodic lattice of size 3, In each

case, the average plaquette,

P=[2/dd-1)]L"%(V), (14)

is plotted as a function of 8.

In the microcanonical ensemble calculation the
ordinary differential equations Eq. (6) are solved
by the Runge -Kutta method with step size AT
=0.01. At 7=0each ¢,,, is chiosen randomly be-
tween zero and 27, and each ¢, , is set to zero
(for reasons mentioned above). Expectation val-
ues are obtained as an average over 7=2000AT
(i.e., using 2000 consecutive configurations),®

After each calculation (or set of 2000 “meas-
urements”) is completed, the value of E is al-
tered by multiplying all of the { p} by the same
factor. This operation effectively heats [cools]
the system if the factor is greater than [less than]|
unity. The Runge-Kutta algorithm is then ap-
plied to step the system forward from 7 to 7+ Ar,
and the heating/cooling process is repeated.
This heating/cooling cycle is terminated after
1000AT and the system is allowed to follow its
trajectory on the new energy shell for 3000AT to
allow the system to equilibrate before more
measurements are taken. On each such energy
shell in a state of equilibrium the system has a
unique value of (7)., and hence of (V) ;.. and
B [cf. Eq. (9)]. Note that the heating/cooling
procedure conserves the vanishing of £ ;for ¢
>N1'n€ep'

In the calculation of the canonical average the
standard Metropolis'' Monte Carlo algorithm is
used. At each B, equilibration for 200 iterations
is allowed after which the average plaquette is
measured for 2000 iterations. Further details
are given elsewhere,?

In Fig. 1 values of the average plaquette as a
function of B are displayed for both ensembles.
The agreement between the two sets of results is
excellent. The amount of computer time required
for each calculation is roughly the same.

The microcanonical ensemble method appears
particularly promising for systems involving
fermions. Such systems are governed by an ac-
tion which (after the fermionic degrees of freedom
are integrated out) is of the form

S=B,S gauge + B, In Det A, (15)
where B,, B, are constants, Sg,,, is the action for
a pure gauge system [such as the action for com-
pact electrodynamics, Eq. (2)], and A is a Hermi-
tian matrix arising from the interaction of gauge
fields with fermions.
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FIG. 1. Microcanonical ensemble calculation (dots)
and Monte Carlo calculation (circles) of the average
plaquette P vs 8 for a U(1) gauge system on a 3-site
lattice.

In this case the microcanonical approach leads
to an equation of “motion,”

i asS B. - 0A ;.
pap = — R - 2 5T (AT, —d (16)
Onu %, B xZ} = Y G

for the case of fermions interacting with a U(1)
gauge field. The Metropolis routine applied di-
rectly to the action Eq. (15) requires the deter-
minant to be reevaluated after each link is tenta-
tively updated. However, to update the entire
lattice with the microcanonical approach [via

Eq. (16)] and, e.g., a predictor-corrector algo-
rithm, A™! must be calculated once and Det A is
obtained at the same time.'* Of course A™" is
needed already for calculating several quantities
of interest (e.g., propagators). Work along these
lines on fermionic systems is in progress.
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