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Abstract

The most complex molecular machines are proteins found within cells. Protein dynamics, in 

particular dynamics on nanoscales, presents us with a novel paradigm for cell signaling: the idea 

that proteins and protein complexes can communicate directly within themselves to effect long-

range information transfer, via coupled domains and correlated residue clusters. This idea has been 

little explored, in large part because of a paucity of experimental techniques that can address the 

necessary questions. Here we review recent progress in developing a promising new approach, 

neutron spin echo spectroscopy.
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Proteins MOVE!

Far from the static objects seen in textbooks, proteins are dynamic actors whose internal 

dynamics stimulates and controls a medley of essential biological processes. The natural 

scale for these internal motions is that of nanoseconds to microseconds and nanometers, so 
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we therefore refer to them as nanoscale motions. Paradoxically, the visualization of this 

nanoscale activity requires using large-scale sophisticated neutron scattering techniques at 

spallation neutron sources and nuclear reactors. Our course of action is thus very much an 

adventure in Big Science, and requires traveling through an interdisciplinary conurbation 

between nuclear physics, nonequilibrium statistical mechanics, molecular biology and 

protein chemistry in order to reach its goals. We therefore give an outline of the field in 

hopes that the reader will share our enthusiasm for this burgeoning endeavor. We begin by 

summarizing basic properties of nanoscale protein motions.

Protein motions are overdamped, creeping movements rather than 

underdamped oscillations

The environment in which proteins act is one of low Reynolds number (usually abbreviated 

Re), which is the ratio of the magnitude of inertial forces to that of the forces that arise from 

the viscous drag that opposes motion. If inertial forces are more important, Reynolds 

number is large, and forces are proportional to mass times acceleration. If viscous drag is 

more important, the Reynolds number is small (< 1000), and mechanical forces are 

proportional to the velocity of the protein, incorporating a concept known as the mobility 
tensor. Reynolds number can be estimated by the simple formula Re=LV/ν, where L is a 

characteristic length scale of the protein, V is a characteristic velocity, and ν is the kinematic 

viscosity of the solvent (for water, ν = 105 Å2/ns). Simple calculations show that even a 

complex as large as a ribosome is still in the overdamped regime (1)**. The environment of 

a protein thus has more in common with playing badminton at the bottom of a swimming 

pool full of molasses (low Re) than in crossing the Atlantic in the Titanic (high Re).

Proteins obey Brownian dynamics

Protein dynamics arises as a result of an interplay between the mechanical forces mentioned 

above, and the thermal forces that arise from the collision of the protein with solvent 

molecules. These thermal forces are random in magnitude and direction, and lead to the 

protein undergoing diffusion. A freely diffusing object displays what is called Brownian 
motion, with frequent changes in the direction and speed of its movement. The world in 

which proteins operate is therefore characterized by the presence of a significant amount of 

noise and the resultant diffusion of protein subunits arising from thermal motion. This 

thermal motion is essential for the protein to reach its equilibrium state (2)**.

The relaxation timescales of these overdamped internal diffusive motions are of order L2 /D, 

where D is the overall diffusion constant of the protein and L is the characteristic length 

scale of the motion. This follows from a Brownian analysis of simple harmonic motion (3)*. 

According to the domain concept of structural biology (4) and the references therein, 

proteins can be considered as being comprised of somewhat rigid domains connected by soft 

spring linkers. Since protein diffusion constants are of the order of a few Å2/ns, we see that 

for domains connected by linkers of the order of L ∼ 10 Å or so, the relaxation timescales of 

nanometer internal modes will be of the order of nanoseconds, with rotational relaxation 

times that are a factor of 4 or so longer. This justifies our use of the word nanoscales for 
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these motions. The scale of such motions is optimal for neutron spin echo spectroscopy (5*,

6**,7*).

Neutron spin-echo spectroscopy (NSE) is unique in its capacity to 

determine nanoscale motions

NSE is a quasielastic neutron scattering technique that employs the Larmor precession of 

neutron spins in a magnetic guide field as a clock to measure extremely small changes in 

velocities of scattering neutrons (8,9), and thus enables the detection of very small energy 

changes corresponding to nanosecond-to-microsecond dynamics. This is a dynamic regime 

that is difficult or impossible to observe with other methods (10).

Neutron spin echo spectroscopy measures the intermediate scattering function I(Q,t), which 

is the spatial Fourier transformation of the space-time van Hove correlation function G(r,t)

(2), , where Q is the scattering vector. (The designation 

“intermediate” arises precisely because only one of the variables of G(r,t) is Fourier 

transformed).

Nanoscale motions determine I(Q,t)

For a given Q, I(Q,t) typically can be fit to a single exponential in time (and is difficult to fit 

to more exponentials, because of the problem of separating rotational diffusion from internal 

mode relaxation). A natural way to interpret neutron scattering data is therefore to examine 

the effective diffusion constant Deff(Q) as a function of Q, which is determined by the 

normalized intermediate scattering function I(Q,t)/I(Q,0):

Eq. 1

where I(Q,0) is the static form factor. As I(Q,t)/I(Q,0) is generally amenable to a single-

exponential fit in time (see Figure 1), Deff(Q) can be accurately estimated by the first 

cumulant expression (5,6,11,12)*:

Eq. 2

which is a generalization of the remarkable Akcasu-Gurol (AG) formula (2,13*,14*) to 

rotational motion (5). (This formula is an elementary sum-rule result that results from the 

fact that the associated Smoluchowski equation forms a Sturm-Liouville system). Here, bj is 

the scattering length of a subunit j, HT is the translational mobility tensor, and HR is the 
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rotational mobility tensor. The coordinates of the various subunits (“subunits” are scattering 

centers that can be atoms, beads, or domains, generically called beads here) are taken 

relative to the center of friction of the protein, and are given by rj (note that Σ rj = 0); kBT is 

the usual temperature factor; and Lj= rj × Q is the torque vector for each coordinate. The 

brackets < > denote an equilibrium average over all protein conformations and scattering 

lengths, as well as an orientational average over the vector Q, so that <Qa Qb exp (i Qr)> 

Q-2 = (1/3)δabj0(Qr)+[(1/3)δab - (ra rb /r2)] j2(Qr) can be expressed in terms of spherical 

Bessel functions j.

The AG approach described in Eq. 2 is valid for either rigid bodies or rigid-body subunits 

connected by soft spring linkers (5,11). The translational mobility tensor HT is defined by 

the velocity response v = HT F to an applied force F. The rotational mobility tensor HR is 

defined by the angular velocity response ω = HR τ to an applied torque τ. In practice, the 

structural coordinates of a protein may be obtained from high-resolution crystallography or 

NMR or from low-resolution EM, SAXS or SANS. Comparison of the calculations Eq. 2 to 

experimental Deff(Q) thus allows one to test models of the mobility tensors. The rotational 

mobility tensor HR can be determined from the translational mobility tensor HT (6,15). We 

point out that the first cumulant expression is explicitly independent of the spring constant of 

a linker connecting the domains. It is thus not necessary to fit multiple time exponentials to 

separate translational, rotational, and internal modes in order to reveal internal dynamics.

The mobility tensor directly reveals internal degrees of freedom

For a rigid body composed of N identical subunits, the translational mobility tensor HT is a 

matrix with N2 identical 3×3 rotation elements. This must be so, since HT yields the 

velocity response of e.g., subunits B and C to a force applied to subunit A. If the mobility 

tensor components HAB and HAC are unequal, the velocity response of B and C will be 

different, B and C will move apart, and the body will no longer remain rigid. Additionally, 

we showed that for a rigid, uniform (nondeuterated) body, Deff(Q→∞) = 2 Deff(Q=0)(6,12). 

Large scale numerical simulations are thus not required to demonstrate internal dynamics.

Comparing the calculated Deff(Q) with data allows one to extract the relative degree of 
dynamic coupling between the various components of the system, for this dynamic coupling 

is defined by the mobility tensor. For example, a rigid two-domain system has a 

translational mobility tensor

Eq. 3a

with all elements of the tensor equal, and yields [via Eq. 2] the simple result that the 

translational contribution to the effective diffusion constant is given by DT
eff(Q)= kBT H0, 

independent of Q. By contrast, a two-domain flexible protein with internal motion has a 

translational mobility tensor
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Eq. 3b

in principal coordinates. The application of equal forces to the two domains of a flexible 

protein will then result in their having different velocities, revealing internal motion. For the 

case where there is one internal translational mode between subunits 1 and 2 with 

D1=kBTH1 and D2= kBTH2 (5), the translational contribution to the effective diffusion 

constant for this flexible system is:

Eq. 3c

Here, S1(Q) and S2(Q) are the form factors of the separate individual protein domains, while 

S(Q) is the form factor of the entire protein. Orientational averages are performed, so that, 

e.g., S(Q)=Σj1 j0 (Qrj1); and S(Q=0)=N2 and S(Q→∞) = N, with N the number of beads. 

Since DT
eff(Q→∞) = DR

eff(Q→∞) (DR
eff(Q) is the rotational contribution to Deff(Q)) 

while DR
eff(Q=0) = 0, Deff(Q→∞) = 4 Deff(Q=0) (6).

If one domain is a fraction × of the whole protein then Eq (2) yields

Eq. 4

Similarly the parsing of a polysyndetonic uniform protein into M equal domains gives 

Deff(Q→∞) ∼ 2M Deff(Q=0), related to the transition from coherent to incoherent 

scattering. The effect can be amplified by selective deuteration (6,16). The Q dependence 
of the effective diffusion constant is thus a highly sensitive probe of active internal 
dynamic modes and correlations (12,17).

The 3×3 matrix HR is evaluated here by an inversion of a 3×3 matrix calculated by summing 

over N bead coordinates n (6) A compact formula arises (6) in terms of a 3×3 matrix inverse, 

using the protein diffusion constant D0 and the N structural coordinates of the protein 

(defined so that Σ n rn = 0):

Eq. 5

NHERF1: A paradigm of long-range allostery

The multi-PDZ domain scaffolding NHERF1 interacts with a number of physiologically 

important transmembrane receptors and ion transport proteins in epithelial cells (18,19). 
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NHERF1 binds to the membrane-cytoskeleton linker protein Ezrin. Previously, we 

uncovered a prominent long-range allosteric regulatory behavior in NHERF1: Upon Ezrin 

binding to NHERF1, the binding affinities of the PDZ domains of NHERF1 for target 

membrane proteins are dramatically increased, even though the PDZ domains are located 

more than 120 Å away from the Ezrin-binding site (6,20,21*). Thus, Ezrin allosterically 

modulates NHERF1 to assemble membrane protein complexes and to tether the assembled 

complexes to the cytoskeletal actin network, which modulates the cell surface targeting and 

intracellular trafficking of the assembled signaling complexes (22-24).

Long-range allostery is an important consequence of internal protein 

motion, and can be revealed by NSE

Cell signaling ultimately involves cytoskeletal rearrangement via structure sensing and a 

Rube Goldberg conglomeration of gear selectors, rheostats, and leaky valve faucets. 

Scaffolding and adapter proteins not only provide a scaffold to dock signaling partners, but 

also propagate and relay signals allosterically to the site of regulation over a long distance. 

Our recent study using neutron spin echo spectroscopy reveals that inter-domain motions in 

NHERF1 on nanometer length-scales and on submicrosecond time scale can propagate 

allosteric binding signals dynamically. The long-range allostery and nanoscale protein 

domain dynamics during the interactions of NHERF1 and ezrin provide a paradigm for the 

mechanisms of how cellular signals can be transmitted in a cellular signaling network (6,12).

NSE reveals the activation of NHERF PDZ domain motion by FERM domain 

binding

First, we present the results for a rigid body, see Figure 1. We then present the calculation of 

the model representing the deuterated NHERF1·dFERM and hydrogenated 

NHERF1·hFERM complexes. Details are given in ref. (6). Figure 2A compares the NSE data 

with the Deff(Q) from the rigid body model for the hydrogenated and partially deuterated 

complexes. Figure 2B is the Deff(Q) of the model incorporating internal domain motion 

between PDZ1 and the rest of the complex. This shows that the long-range allosteric motion 

is activated by FERM binding.

Deuterium labeling of a domain amplifies the effects of internal motion detected by NSE by 

masking a portion of the form factor, and, as a result, highlighting the contribution of the 

terms of internal domain motion (6,15). Because for proteins inertial forces are less 

important than diffusive, viscous effects, protein dynamics should be largely independent 
of the mass of the protein. The diffusion constant of a deuterated protein is the same as a 

hydrogenated protein, even though deuterium has twice the mass of hydrogen. Deuterium 

contrast matching is thus valuable in neutron spin echo spectroscopy experiments.

New horizons: The highly dynamical nature of protein complexes

Protein dynamics presents us with the compelling idea that proteins can communicate within 
themselves to effect long-range allosteric information transfer (6,25). Experimental 

techniques to observe these essential phenomena in proteins macromolecular complexes are 
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however in their infancy (26-28). This review discusses an especially promising candidate: 

neutron spin-echo spectroscopy. We believe that it is impossible not to be excited about the 

challenges ahead, and the rewards for their successful solution.
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Highlight

• Nanoscale protein dynamics affects cell signaling propagation via long-range 

allostery in a largely unknown fashion.

• It is difficult at best to probe protein dynamics at these nanoscales since 

techniques are lacking.

• The novel technique of neutron spin echo spectroscopy (NSE) reveals 

nanoscale dynamics changes that control the assembly of protein complexes.
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Figure 1. NHERF1 alone can be described by a rigid-body model
Comparing experimental Deff(Q) of NHERF1 (black open squares) with rigid-body 

calculation (black solid line).
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Figure 2. Selective deuteration highlights the activation of domain motion in NHERF1 upon 
binding to Ezrin FERM domain
(A) Comparing NSE data with rigid model calculations for the NHERF1·dFERM and 

NHERF1·hFERM complexes using the coordinates of the docked domains. (B) Comparing 

experimental Deff(Q) with calculations incorporating interdomain motion (via the mobility 

tensor) between PDZ1 and PDZ2, for NHERF1·dFERM (dashed red line) and 

NHERF1·hFERM (dashed blue line).
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