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Strong evidence supports the idea that pure q,4 field theory is trivial (non-interacting) in four 
dimensions. In the context of perturbation theory when gauge fields or fermions are present the 
combined theory may become non-trivial for a limited range of values of the renormalized 
coupling constants. Calculable upper bounds on the masses of elementary Higgs particles are 
implied by the restrictions on these coupling constants. Other constraints (on, e.g. the number of 
fermions in the theory) are also implied. 

1. Prolegomena 

The concept of particle mass generation by spontaneous symmetry breaking [1] 
has become one of the most useful mechanisms in elementary particle physics. One 
way symmetries may be broken in a quantum field theory is by the introduction of 
elementary scalar fields (i.e., by coupling the gauge fields of the theory to a Ca field 
theory). At the classical level these fields interact with themselves in such a fashion 
as to produce a vacuum state which lacks certain symmetries of the lagrangian. 
Gauge particles propagating in this asymmetric vacuum may then appear to be 
massive. It is generally assumed that no significant changes occur in this picture due 
to quantum effects such as renormalization. 

This assumption may not be correct, however. A large body of evidence [2] has 
been presented which indicates that (at least single-component) pure q5 4 field theory 
is trivial in four space-time dimensions. The word "trivial" is taken to mean that the 
scalar field does not interact with itself; i.e. that the renormalized quartic coupling 
constant is zero. This triviality seemingly persists for all values of the bare coupling 
constant, and therefore presumably precludes the existence of spontaneous symme- 
try breaking in pure q~4 field theory. In order to salvage the Higgs mechanism with 
fundamental scalars, a new phenomenon must occur in the theory when gauge fields 
are present. It is with the structure and scope of this phenomenon that the following 
analysis is concerned. 

It has been known for some time [3] that ultraviolet-stable fixed points exist for 
zero gauge and quartic coupling in various theories (e.g., SU(3) coupled to a single 
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fundamental representation scalar]. Theories of this form are asymptotically free in 
both the gauge and quartic couplings, and triviality is thus avoided. In general, 
realistic theories which involve spontaneous symmetry breaking do not  have asymp- 
totically free gauge and quartic couplings; however, as is shown below, it may still be 
reasonable to study the question of their triviality (or non-triviality) in perturbation 
theory. 

When q¢ field theory is coupled to gauge fields (or to fermionic matter fields) it 
can become non-trivial, but only for certain values of the renormalized coupling 
constants. If the Higgs mechanism with elementary scalars is to work, there must 
therefore be restrictions on the renormalized parameters of the theory. These 
restrictions can be translated into calculable upper bounds on the Higgs mass. 

The reason for such a bound can be explained simply. For a pure field theory the 
Lagrange density is given by 

1 2 =2(oq,u~) 1. 2-t2 1~ .4  (1) 

where m 0 and X 0 are the bare mass and quartic coupling constant, respectively. 
Triviality is equivalent to the statement that the renormalized quartic coupling, X ~, 
equals zero. In other words, the scalar particles interact in such a fashion as to screen 
totally any bare charge X o. 

Consider the effect of coupling a gauge field to the scalar Lagrange density, eq. 
(1). It might be expected (and it is demonstrated below) that in order for the 
combined theory to be non-trivial the renormalized quartic coupling must not be too 
strong. Denote the gauge coupling constant by g. The breakdown of total screening 
occurs when the quartic coupling constant is less than the effective quartic coupling 
generated by the gauge field interaction, i.e. when 

XR ~< ~+g~, (g2 << 1) (2) 

for some calculable constant ~'+ which is greater than or equal to zero. Note that eq. 
(2) gives the correct result (hR = 0) when the gauge field is absent (i.e., when gR is 
zero). In, e.g. the standard model [4] of the weak interaction the squared ratio of 
Higgs to W-boson mass is given at tree level by 

( m---0-H ) 2 = (3) 167h{ 
mw g~. " 

Eq. (2) therefore implies the bound 

W/H)2 
- -  ~< 1 6 ~ ' + .  
m w  

(4) 
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2. Application of the renormalization group 

The renormalization group [5, 6] equation for the effective (or "running") quartic 
coupling constant X(t) is 

d• ( t )  
dt - fix(X)" (5) 

Equations of this form describe the response of coupling constants when the 
normalization point ~2 at which the couplings are defined is changed to/z2e-t. Such 
equations apply in the deep euclidean region of the theory where mass terms can be 
dropped. 

Eq. (5) has the boundary conditions 

X(t = 0) = X, ,  (6a) 

X(t ~ oc) = ~0, (6b) 

where 7t R is the renormalized quartic coupling constant and X 0 the corresponding 
bare coupling. Eq. (6b) simply states that at high-momentum transfer an incident 
scalar particle interacts with the bare charge of the target scalar. 

In the language of the renormalization group, the triviality of a (/4 theory is 
essentially equivalent to two statements: 

(i) The bare coup#ng constant )t o is finite [or the running coupling is finite at all 
momentum scales]. It would indeed be difficult to make sense out of a theory whose 
effective coupling increased truly without limit as the momentum scale became 
larger; 

(ii) The beta function ~a(~ ) for the running quartic coupling constant is positive and 
equals zero only when ~t is zero, i.e. 

/3x(X ) > 0, ifX > 0, 

= O, ifffk = O. (7) 

Specifically, eqs. (5)-(7) imply that the renormalized coupling X R is zero for any 
sensible (i.e. finite and positive) value of the bare coupling X 0. 

Strictly speaking the current evidence for the triviality of q,4 theory is generally 
valid only for a single-component theory. This deficiency is probably due to the fact 
that more complicated (i.e. multicomponent) scalar field theories have not been 
analyzed with this question in mind (but see ref. [7]). It is therefore assumed in what 
follows that any 4¢ field theory is trivial in four dimensions (when gauge fields or 
fermions are absent). 

This presumed fact is so remarkable that it deserves further scrutiny. Recall that 
in the original classical Lagrange density (eq. (1)) there are two bare parameters,/% 
and )t 0. When quantum effects are accounted for (i.e. when the theory is renormal- 
ized), all that remains is one parameter, the renormalized mass/~R- Quantum effects 
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have determined that X R is zero; i.e. the process of renormalization has "adjusted" 
one of the parameters of the theory. In, e.g. the standard model [4] of the weak 
interaction one parameter, the Higgs mass, is not determined by low-energy phe- 
nomenology in the classical (tree-level) approximation. Thus it might be hoped that 
a similar quantum "parameter reduction" occurs and determines the Higgs mass. In 
fact, as is shown below, renormalization effects may generally bound the Higgs mass 
from above. 

3. Examples 

3.1. SU(N) WITH A FUNDAMENTAL REPRESENTATION SCALAR 

In order to illustrate the above points, it is useful to consider the case of an 
SU(N) gauge theory coupled to a fundamental (vector) representation scalar. Define 
the gauge coupling constant via a minimal coupling generalization of eq. (1). Then 
the renormalization group equations can be written in the form 

1 6 r r 2 ~  t = A X  2 + B X g  2 + C g  4 +  . . .  , (8a) 

where [3, 8] 

dg  
16~r2 dt lb°g3 + " '" ' (Sb) 

A = 2(N + 4), 
6 B =  - ~ ( N 2 -  1), C= 6-~-(N-1) (N2 + 2 N -  2) 

4N 2 

( 9 )  

and 

1 C2(S)d(S)  (10) b o = ~ C 2 ( G ) _  y, 4 C 2 ( F ) d ( F )  - ~_, 6 r 
3 r fermions scalars 

In eq. (10), d is the dimension of the representation and r the rank (number of 
generators) of the group, while C 2 is the value of the Casimir operator. For the case 
under consideration, 

SU(N)  adjoint: C2(G ) = N, 

SU(N)  fundamental: C2(S)d(S)  = ~. (11) 
r 

Eqs. (8) are most easily studied in terms of a new variable ~" defined by 

X 
--- - - .  02) g2 
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In terms of this new variable, eq. (Sa) is 

16~ "2 d~ 
g2 dt 2 +(B  + b0)g+ C 

) 
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Eq. (13) possesses two fixed points ~'+ and ~" (with ~'+ greater than g" ) which are 
real and positive whenever 

b o < - B  - ( 4 A C )  1/2 . (14) 

Consider first the case when the condition eq. (14) is satisfied. If the renormalized 
coupling constants 2~ R and gR are such that 

___)~r~ S'R g2 <~'+' (15) 

then it follows from eq. (13) that (approaches ~" as t increases without bound. (Of 
course if ~'R equals ~+ then ~ does not change as t increases.) The existence of the 
ultraviolet-stable fixed point ~" implies that a non-trivial theory can be constructed 
whenever g'R is within the domain of attraction of this fixed point (i.e. whenever 
~'R < ~'+) provided that the bare gauge coupling go is finite. 

This last statement deserves a word of explanation. If (approaches the fixed value 
~'+ as t increases without bound, then the ratio of the bare quartic coupling constant 
2'o to the squared bare coupling constant go is finite. When, in addition, the gauge 
theory in question is asymptotically free (i.e. when b 0 is greater than zero) both of 
the bare couplings are zero. In that case both of the running couplings X and g2 
approach zero in a fixed ratio ~" . More generally ~2 approaches some finite value g2 
in the limit of large t. 

If either of the bounds eqs. (14) or (15) is not satisfied, ~ should increase without 
bound as t increases. For large ~ the gauge coupling apparently cannot stop X from 
increasing without bound, and so the bare coupling is infinite (cf. eqs. (6)). Since by 
assumption no sensible theory can be constructed with an infinite bare coupling 
constant, it follows that eqs. (14) and (15) must be satisfied in a sensible theory of 
this form. 

For the case of SU(N) coupled to a fundamental representation scalar, the bound 
eq. (14) gives a restriction on b 0 (equivalent, via eq. (10), to a lower bound on the 
number of fermions in the theory), 

b o < b y ~ ( N ) ,  (16) 

with b g ~ ( N )  given in table 1 for various values of N. Note that for N equals 2 (the 
only case where symmetry breaking is complete) b 0 is negative. In general it seems to 

(13) 
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be likely that complete symmetry breaking demands an asymptotically non-free 
gauge coupling [3, 8] (but see ref. [10]). 

In the most interesting case (N = 2), where spontaneous symmetry breaking is 
complete (i.e. no massless vector bosons remain) the above discussion implies the 
bound 

)~_~R 
~R - g2 ~< ~'+' (17a) 

with 

~ ' + = l ~ [ ~ - - l b o + ( ( 9 - ½ b o )  2 - 2 7 ) 1 / 2 ] .  (17b) 

Eqs. (17) imply the upper bound eq. (3) on the Higgs mass. 
In the above analysis the existence of an ultraviolet-stable fixed point in the 

renormalization group equation for the gauge coupling is assumed. Of course, this 
fixed point occurs at zero coupling in an asymptotically free theory. If the gauge 
theory in question is not  asymptotically free, then such a fixed point may either 
appear in the gauge-Higgs system itself, or (at higher momentum scales) in the 
unification of the gauge theory with other gauge fields or quantum gravity. If such a 
fixed point did not  appear, then the gauge theory would be "trivial" in the same 
sense that pure q¢ theory appears to be. The apparent existence of quantum 
electrodynamics may be taken as evidence that a theory which is not  asymptotically 
free in perturbation theory can become non-trivial in one of these ways. 

A more relevant question is whether this presumed fixed point occurs within the 
region of validity of perturbation theory. As is demonstrated below, for typical 
theories this region of validity extends to momentum scales higher than the Planck 
mass; thus perturbation theory should give reliable information about stable fixed 
points up to the momentum scale where quantum gravitation plays an important 
r61e. In other words, the analysis given here is expected to be valid if a fixed point in 

TABLE 1 
Upper bounds on b0 for SU(N) coupled to a fundamental rcpresentation scalar 

N b8 ~ ( U ) 

2 2 ( ~ -  3ff3) - -1 .4  
/1~2 

4 2( 45 3 l f f i l ) -2 .6  

2(3 - ~f3)N- 2.5N 
(large-N limit) 
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the gauge coupling is approached at or before momentum scales of the order of the 
Planck mass. 

Perturbation theory presumably loses its meaning when the running gauge cou- 
pling constant becomes of order unity, i.e. when the momentum scale Q divided by 
the renormalization point ~ exceeds the bound (b 0 is assumed to be negative) 

( - 16~2  ) 
Qmax exp - - -  . (18a) 

I ~ g ~ b  o 

For typical non-asymptotically-free theories - g 2 b  o is positive and of order unity at 
momenta of a few GeV. Thus perturbation theory may be appropriate up to 
momenta of the order of 

Qmax ~ 1070 G e V ,  (18b) 

which is far greater than the Planck mass mplanck ~ 1019 GeV. Hence perturbation 
theory in g should be valid up to at least the point where unification with gravity 
presumably occurs (actually much further than this scale if eqs. (18) are taken 
literally). 

It must be pointed out, however, that phenomena which are intrinsically non-per- 
turbative may conceivably alter the above discussion. More infrared-stable fixed 
points in ~" (cf. eq. (13)), typically associated with new phases of the theory, may 
appear for larger ~" for example. However, it has been argued [9] that the requirement 
of unitarity places an upper bound (larger than ~'+) on ~. Additionally the above 
picture displays the simplest mechanism by which triviality can be avoided. It is 
therefore worthwhile to examine a realistic model in this fashion. 

3.2. THE STANDARD MODEL OF THE WEAK INTERACTION 

The analysis of subsect. 3.1 is easily generalized to more realistic models. The 
renormalization group equations for the standard model [4] of the weak interaction 
follow from the work of ref. [8]. They are 

167r 2 ~ t  = 12X 2 + ( - 9)~2X + ( - 3)~ '2X 

q_ 994 q_ ~g2~,2 _{_ 3g,4 (19a) 

16,rr 2 l ,q, -,3 = ~-"0g , (19b) 

16~ 2dg - 'b =3 (19c) 
dt ~ 0g , 

where g and g'  are the coupling constants for the SU(2) and U(1) gauge fields 
respectively, while b o and b(~ are positive. 
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These equations are simpler to analyze when written in terms of the variables 

whence, 

?t 
P ~- g,2 ' 

g2 
o---~ g,2 ' 

16~r 2 ~_~ = ~ ,2  [1202 _ (3 + 9# + bo)t5 + 962 + 36 + 3] 

---12g'2[tg-p+(ff)][/5-O (6 ) ] ,  

16Ir2 ~--~6 = -g '26  ( b o + b06 ) , 

where the functions 0 _+(o) are given by 

0 ± ( o ) = 2 ~ { 9 0 + 3 + b 0 + _ [ 9 ( o + _ o ) ( o _ o  )11/2}, 

while 

o + =  l ( < _  2 _ 6 ) 1 ,  

Note that eqs. (21) imply the restrictions 

O < O < O + ,  

b{~2 > 6, 

if the 0 +(o) are real, and that 

p+>O, if o > ~ { 3 + b ~ ) .  

To lowest order o R [--- o(t = 0)] is related to the weak mixing angle by 

l 
1. 

OR sin20w 

Eqs. (21) imply that 

dO = 12 [O- 0+(6)] Jig- O (6)] 
d8 6 (b  6 + bog ) 

(20a) 

(20b) 

(21a) 

(21b) 

(21c) 

(21d) 

(22a) 

(22b) 

(22c) 

(23) 

(24) 
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Since (by eq. (21b)) 6(0 is a monotonically decreasing function of t, the existence of 
an ultraviolet-stable fixed point (and a non-trivial theory) is related to the behaviour 
of p as o tends to zero. In order for p to approach a fixed point, it is necessary that 

and in particular that 

~< p + ( ~ ) ,  (25a) 

OR ~ P+ (OR) " (25b) 

Note also that p+(oR) must be real, which implies that 

o R > o_ .  (25c) 

When four fermion flavours are present the gauge theory parameters are 

06 = 163, (26a) 

b o = ~ .  (26b) 

Since o is less than zero, eq. (25c) essentially gives the trivial bound sin20w ~ 1. 
However, eq. (25b) gives a useful bound; for sin20w = ¼ this bound is 

XR 
OR = ~ ~< P+(°R) - -  2.4. (27) 

gR 

Eq. (27) in turn gives the bound 

( m H ) 2 =  16~RR - -  mw = 16 OR ~< 1 2 . 8 , - -  OR 

that is 

m H ~< 3.6m w - 270 GeV, 

using m w - 37 GeV/s in0  w - 74 GeV. 

(28) 

3.3. GRAND UNIFICATION 

As the gauge groups and particle content of a theory grow, so does its complexity. 
The renormalization group equations for most grand unified theories provide no 
exception to this rule. There are certain features of the preceding analysis which 
seems to persist in this more general case, however, and it is with these features that 
this section is concerned. 
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The major difficulty with studying more complicated theories involves the pro- 
liferation of quartic coupling constants. For example, in an SU(N) gauge theory 
coupled to an adjoint representation scalar, there are two quartic couplings 

( a d j )  - - I)k 1 [Tr[ I~ 2 ] ]2  __ X2Tr  [ , 4 ] .  (29) 

If a fundamental representation scalar is present as well, the number of quartic 
couplings goes up to five (for simplicity, couplings of the form q~3 are omitted): 

~ (fund + adj) - - ) t 3 ( H + H )  2 - X4 H+ q:)2H 

- LsH+HTr[(/)2 ] + • (adj). (30) 

Obviously finding the ultraviolet-stable fixed points and their respective domains of 
attraction in grand unified theories is a technically more difficult (and probably 
numerical) problem. 

Many of the techniques discussed in the last section can be applied to such 
theories, however. For instance, in the case of an SU(N) gauge theory with an 
adjoint representation scalar, the renormalization group equations for the theory can 
be written [3, 8] 

with 

16w 2 d~  
~2 dt 

16~r 2 d(2 
~2 dt 

- -  - A I (  ~ + ( B 1  + bo)(1 + C l (  2 + D l ( l (  2 + E 1 , (31a) 

= A2( 2 + ( B 2 + bo)(  2 + C2~ ( + D2~71~72 + E2, (31b) 

~'i - g ~ ,  (31c) 

16vr2 ~--~-~ = - ½bog 3 , (31d) 

and the constants A i, B i, Ci . . . .  depend only [3,8] on N (and not on b0). Eqs. (31a) 
and (31b) do not possess an ultraviolet-stable fixed point for positive b 0 if N < 6. 
However, as is shown below, for b o sufficiently large and negative such a fixed point 
always exists in this case. Perturbation theory is a valid method for identifying such 
fixed points when g2b o is "small" (cf. eq. (18)); thus the limit of large and negative 
b o must be approached with caution. 

It is easiest to obtain the limit of large negative b 0 if eqs. (31) are rescaled as 
follows, 

1 - g 2 d t  = ds.  (32) 
bo ~'i -= Xi, 16vr2b ° 
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Eqs. (31) become 

dxx _ x I ( A I x  1 _ 1 + D1X2) 4- C1X 2 , 
ds 

dx2 _ x2 (A2x  2 _ 1 + D2X1) 4- C2X 2 , (33) 
ds 

plus terms which are negligible in this limit. Eqs. (33) have a fixed point when both 
X1 and X2 vanish. If the equations are expanded for small Xi (--6Xi) the result is 

d 
~ssSX, = - S x , ,  (i = 1,2).  (34) 

This fixed point is therefore attractive and represents an ultraviolet-stable fixed 
point. Any point in the domain of attraction of this fixed point represents a 
non-trivial theory given the usual assumption of a perturbative fixed point in the 
gauge coupling. Thus for large and negative b 0 a non-trivial theory is possible. Of 
course, it is always possible to achieve such a value of b 0 by adding enough fermions 
to the theory. In order to make b 0 negative enough for an ultraviolet-stable fixed 
point to appear, a lower bound on the number of fermions in the theory may 
therefore need to be satisfied. The boundary on the domain of attraction of the fixed 
point also furnishes constraints on the quartic couplings of the theory. 

4. Ynkawa couplings and triviality 

The examples given above illustrate the method by which gauge fields can turn a 
trivial scalar theory into a non-trivial one. Yet the addition of a gauge field is not the 
only way to make a 04 theory non-trivial. Another way is to couple fermions to the 
scalars; in that case the Yukawa couplings can stabilize the quartic coupling so that 
the theory becomes non-trivial (see also refs. [10]). 

The standard model of the weak interaction provides an example of this phenome- 
non. Consider a version of this model with one generation of leptons, and a Yukawa 
coupling of strength h between these and a scalar field of the form 

~.,heR%eL, i. (35) 
i 

The renormalization group equation for h follows from standard results [8] 

dh = {,~3_ ( ~ , 2  + 4~2)~, (36) 16~r2-d7 

where the evolution of the gauge couplings g and g' is described by eqs. (19). 
The coupling g' increases with t, while g decreases to zero for large t. Thus for a 

suitable range of parameters it is a reasonable approximation to neglect g relative to 
g'. Define a new variable ~, by 

h 
7 = ~ 7 .  (37a) 
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Eqs. (36) and (19) then give the result 

1 16,rr2~=,~[~.~2 (~  + b{5)] , 
g,2 (38) 

g,2 dt 
16rr 2 d (  

where g is set to zero as above. If/~is set equal to 3'*g' then eq. (40) can be written in 
terms of (, where 

( =  --~-~ (41a) ~t2 ' 

= 12( 2 + (123, *2 - 3 - 2 b ; ) ( +  (] - 23, *4 ), 

= 1 2 ( ( - ~ ' + ) ( ( - ~ "  ). 

If b~ is nearly zero, the fixed points ~'+ are given by 

~" +_= -~[- 5 + (11 × 15) 1/2] - 0.97 , -  2.2. (42) 

Note that the roots are of opposite sign, and thus (approaches zero as t increases 
provided that ~'R [-- ((t  = 0)] is less than ~'+. 

Since (approaches zero in the limit of large t when ~'R is less than ~'+, and because 
~2 increases in this limit, ~. approaches zero. Thus the bare coupling ?~o is zero, and 
the scalar theory is not only non-trivial but is asymptotically free as well. It must be 
pointed out, however, that this result occurs only when 7R is exac t l y  equal to 7*. In 
the standard model, a Yukawa coupling h R = ~,*g~, implies the existence of a lepton 
of mass 

m L = 2 3 /4GF1/2h  R 

- 176 GeV × h R 

- 315 GeV. (43) 

Note that this mass is precisely determined by an eigenvalue condition on 7*. 

(41b) 

in this approximation. Note that for y equal to the fixed point value, 

(7")2 = ~+ 2b~, (39) 

the couplings h and g' evolve in this fixed ratio. The quartic coupling in turn evolves 
according to 

dX 1 6 ~ r 2  = 12•2 + 12~/~2 _ 3Xg,2 _ 12/~4 + 3g,4, (40) 
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Of course, if h R is less than ~,*g~,/~ decreases to zero too fast to affect the quartic 
coupling. If h R is greater than 3'*g~, the effective coupling /~ presumably grows 
uncontrollably and no sensible theory can result (but see the discussion at the end of 
subsect. 3.1). 

5. Conclusions 

The assumption that a scalar field theory without gauge fields is trivial (i.e. that the 
renormalized quartic coupling is zero) implies strong constraints on a theory with 
gauge fields. The addition of gauge fields can in fact make a trivial pure scalar 
theory non-trivial. Indeed, such a phenomenon may occur in realistic theories such 
as the standard model of the weak interaction and in grand unified theories. 

The mechanism by which triviality is eliminated typically works for a small range 
of the renormalized coupling constants of the theory. Basically a bare scalar particle 
screens itself totally, so that the renormalized scalar charge is zero regardless of its 
bare value. The addition of a gauge field generates an effective quartic coupling 
constant; if this effective coupling is at least as large as the original coupling it can 
destroy the total screening of bare charges. 

However, the screening persists if the quartic coupling is much larger than the 
effective (gauge + quartic) coupling. The necessity of the destruction of the screening 
phenomenon forces restrictions on the bare couplings; a bound on the renormalized 
couplings follows: 

?t R .%< ~-+g~, (g2 << 1) (44) 

for some calculable constant fR. This restriction in turn implies a calculable upper 
bound on the ratio of Higgs to gauge boson mass. For, e.g. the standard model of 
the weak interaction, this bound is 

( rn~  12 = 16~R 
mw ] g2 ~< 12.8, (45) 

for reasonable parameter choices, and similarly for other theories. 
It was also shown that Yukawa couplings to fermions could rescue a theory from 

triviality. This mechanism generally leads to an eigenvalue condition [10] for the 
fermion mass. Thus if such a mechanism is present in a theory it should be possible 
to calculate various fermion masses (all roughly the order of the gauge boson 
masses). Such a precise prediction may be aesthetically undesirable, however. 

It must be emphasized that the elimination of triviality and the existence of 
bounds like eq. (45) has nothing to do with the appearance (or disappearance) of 
asymptotic freedom [3,8,10,11]. Indeed, in order for a theory to be rendered 
non-trivial by gauge couplings, at least one of the couplings is in general not 
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asymptotically free. Restrictions on the number of fermions in the theory can follow 
from such a requirement. 

Finally it should be noted that technically speaking the work presented here 
assumes the presence of an ultraviolet-stable fixed point in the (non-asymptotically 
free) gauge coupling of the theory. Such a fixed point is necessary in order that the 
associated gauge field is non-trivial, and may occur either in the gauge theory by 
itself or when the theory under study is unified with other gauge fields or with 
gravity. 

Simple arguments based on perturbation theory have been shown to yield interest- 
ing results. Although perturbation theory appears to be a valid technique up to 
momentum scales of the size of the Planck mass it would be useful to extend the 
present discussion beyond a perturbative analysis. In particular, it would be interest- 
ing to study the triviality question for a non-asynptotically free gauge theory 
coupled to a scalar (e.g. the abelian Higgs model) by non-perturbative methods such 
as a Monte Carlo simulation [12]. Another problem of interest is to study the effects 
of triviality on supersymmetric theories, where constraints demanded of a non-trivial 
theory must be even more restrictive. 

At the conclusion of this work a preprint [13] was received which gives upper 
bounds on the mass of Higgs particles. In distinct contrast to this work, it is there 
assumed that q,4 theory remains trivial even when coupled to a gauge f ie ld .  In view of 
the existence [10,11] of eigenvalue conditions for asymptotic freedom in sponta- 
neously broken theories, as well as theories (e.g. SU(3) coupled to a fundamental 
representation scalar) which are asymptotically free [3] in both the gauge and quartic 
couplings, and finally the results of the present work, such an assumption may 
require some qualification. 
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