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Strong evidence supports the idea that pure q~4 field theory is "trivial" or non-interacting. 
Should such a situation persist when gauge fields are present, it is fair to question the idea of 
symmetry breaking (and gauge boson mass generation) by elementary scalars. An alternative 
possibility, suggested by the consideration of toy models, is that a consistent non-trivial theory 
may exist for only a select range of parameters, implying for example that the standard model 
Higgs mass may be bounded or calculable. In principle the Monte Carlo renormalization group 
can be used to examine this possibility. Here the formalism is elucidated and the results of the 
first calculation for the standard model are presented. 

1. Prolegomena 

Over two decades ago it was suggested [1] that gauge particles could be rendered 
massive in a theory if elementary scalar particles exist. These scalars supposedly 
interact with themselves in such a fashion [2] as to generate a vacuum state which 
lacks a symmetry of the action. Gauge particles propagating in the asymmetric 
vacuum appear to be massive, while the underlying theory remains renormalizable. 
This idea of "spontaneous" symmetry breaking in fact is an integral part of the 
standard model [3] of the weak interaction. 

Nevertheless a compelling variety of evidence [4-6] suggests that pure q~4 theory 
is "trivial" or non-interacting in four dimensions, i.e. that in this limit no sponta- 
neous symmetry breaking occurs. In certain cases (such as the large-N limit of the 
O(N) gauge model) gauge fields seem to "rescue" a ~4 theory from triviality 
provided that the parameters of the renormalized theory obey certain restrictions 
[7]. The situation with the standard model remains an open question, although 
non-perturbative methods have been applied [7-10] to address this question in 
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simpler gauge-Higgs systems. Here we present results from a first non-perturbative 
study of the possible triviality of the standard model. 

It should be mentioned that (in contrast to a popular misconception) it is not in 
general necessary for a theory to be asymptotically free in order for it to be 
non-trivial. It is only necessary that the running coupling constants approach 
fixed-point values (corresponding to zeros of the beta functions) as the momentum 
scale increases. A fixed-point value can even be infinite, corresponding to an 
appropriately-defined zero of the beta function at infinite coupling. What must be 
avoided is a "Landau ghost", where the running coupling becomes infinite at a 
finite momentum scale. Thus asymptotic freedom is sufficient to guarantee non-triv- 
iality (an asymptotically-free theory has an attractive fixed point at zero coupling), 
but unnecessary. Whether or not the theory is asymptotically free, the domain of 
attraction (i.e. the set of values of the renormalized coupling constants for which the 
running couplings approach the fixed point) of the fixed point determines the 
allowed range of parameters for a non-trivial theory. If this domain of attraction is 
finite, an (upper) bound on the Higgs mass is a likely consequence [11-13]; if it is 
limited to a single point, the Higgs mass is predictable [11, 7,14]. The implications 
of these ideas for real-space renormalization have been discussed by Hasenfratz [4] 
and ourselves [6, 7, 9] and are reviewed below. 

The organization of the paper is as follows: first, a brief review of the ideas of the 
real-space renormalization group is given, followed by a definition of the SU(2) x 
U(1) r lattice Higgs model. Various limit models are discussed, and finally the full 
SU(2) x U(1)y model is studied. The results are discussed in light of the above 
remarks. 

2. Triviality pursuit: A description of the procedure 

How can the question of the triviality or non-triviality of a theory be answered in 
a sensible fashion? One way of approaching these questions is via the Monte Carlo 
renormalization group (MCRG). By dealing directly with the scaling properties of 
the various field and operators under consideration, it allows an economical (albeit 
numerical) formulation of the problem. Additionally, by restricting the analysis to a 
few carefully chosen operators, the MCRG allows one to introduce accurate and 
systematically improvable approximations. More direct methods [5] of studying 
triviality do not allow this simplification. 

The M C R G  [15-17, 6, 7] is a combination of the ideas of Monte Carlo simulation 
[18] with those of the real space renormalization group [19]. The system under 
consideration is divided up into "blocks" or collections of site variables, and a 
smaller set of block variables is defined by averaging in some fashion over these site 
variables. The new block system is governed by a block-renormalized action 
(defined by couplings { K'}) in the same fashion as the original site action (defined 
by couplings {K }) governed the site system. By studying the "flow" of couplings 
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{K}  -+ {K'} ~ {K"} ~ " "  as repeated blockings are performed, the critical 
properties of the system can be determined. For a lattice gauge theory, these critical 
properties determine the continuum limit of the theory, since in this limit the lattice 
spacing in units of the correlation length must vanish, implying a divergent 
correlation length. Any continuum limit therefore lies on a critical surface. The lore 
of the renormalization group [19] tells us that the critical behaviour at all of the 
uncountably infinite number of points on this surface can be ascertained by the 
consideration of the renormalization flow in the neighbourhood of the fixed points 
which control it. The efficiency of such a reduction is difficult to miss. 

A second important point to keep in mind is the fact that the number of relevant 
parameters for the continuum theories associated with a given fixed point is equal to 
the number of its independent renormalized couplings. Here, the word "relevant" is 
used in the sense of the renormalization group, i.e. it refers to the number of 
directions in which the renormalization group trajectories flow away from the fixed 
point. Thus if the number of relevant directions for a fixed point is less than the 
number of renormalized coupling constants, one or more of these couplings (e.g. the 
Higgs mass) can be calculated in terms of the others. This quantum "parameter 
reduction" [11] is perhaps easiest to see within the framework of the renormalization 

group formalism. 
These ideas can be formulated in a more precise mathematical fashion as follows. 

Consider a system of site variables {q~} governed by a site action S{q,}. A 
block-renormalized action S'{4~'} is determined from the site action by use of the 
projection operator P[{ q/}; { q~ }]: 

e x p [ - S ' {  ~'}] = Tr(+}P [{ ~ '} ;{  ~ } ] e x p [ - S ( + ) ] ,  (1) 

where the trace (or functional integral) is only over the site variables { q, }. The 
requirement that the renormalization group transformation preserve the partition 
function (vacuum-to-vacuum transition amplitude) of the system imposes the con- 
straint 

Xr{+,}P[{¢'}; {+}l = 1. (2) 

The projection operator is otherwise entirely arbitrary. 
In order to extract the flow diagram of a theory via the MCRG, it is necessary to 

calculate the block action. General methods for determining the block action have 
been given elsewhere [16,17, 6, 7, 21]. The specific method [6, 21] used here is based 
upon the following observation [6]: suppose that one had a set of values x 1, x2 . . .  of 
a random variable x distributed according to a probability measure 

p ( x ) d x =  N(?~ )e-XX*dx (3) 

over the interval - ~ < x < + ~ with X an unknown parameter to be determined. 



50O 

Then, since 

it follows that 

D.J.E. Callaway, R. Petronzio / Standard model 

f_+o~ d [x%_X~,] dx G = 0 (4a) 

n < x " - l >  - 4X<x3+'> = O,  (4b) 

and thus X can be determined by measuring moments of x over the distribution. 
This trick [6] is a consequence [21] of the invariance of the integration measure dx 
and domain ( -  oo, oo) under infinitesimal translations x ~ x' = x + e: 

f+_ ~dxf(x)= f+ dx'f(x') 
~ 0  - - 0 0  

so that 

f d f ( x )  + " ' ,  (5a) +~dxf(x) e dx dx 
- -  0 0  - - 0 0  

+~ d 
f~ dx ~ [ f ( x ) ]  = O. (5b) 

Note that f(x) cannot be invariant under the reflection x ~ - x  (e.g., n must be 
odd in eq. (46)), else eq. (5b) is only a trivial (0 = 0) identity. 

When this concept is applied to path integrals [6, 21, 9,10], the result is 

, 3 
f~69 3--~-~ [O, ,{ff '}exp(-S(6/})]  = 0 ,  (6) 

provided that the quantity in square braces [ . . .  ] vanishes or is periodic at the limits 
of integration. If a set of functionals On{~'} is inserted in eq. (6), the result is a 
system of simultaneous equations for the couplings ( K'} which determine the block 
action S ' (~ '}  for the theory. Thus the block renormalized action can be readily 
determined by measuring the expectation values of various functionals over the 
space of block fields. Applications of this technique to multicomponent systems are 
discussed in sect. 4. 

3. The SU(2) x U(1)r  lattice theory 

In the lattice standard model considered here, the fermionic sector of the theory is 
neglected. This simplification is essentially forced upon us, for the inclusion of 
chiral fermions in a lattice theory is an extraordinarily difficult problem [22]. 
However, if only light fermions are considered, the associated Yukawa couplings are 
quite small (e.g. - 10-5 for the electron) and are therefore likely negligible. Heavy 
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fermions (i.e. those whose masses are an appreciable fraction of the - 2 0 0  GeV 
mass scale of the weak interaction) may require further consideration [12]. 

The bosonic sector of the lattice standard model (employing the usual [23] 
formalism for lattice gauge fields) is defined by the partition function 

oo(OlO)-oo-- z= f[I-I dU][1-l dV][1-I d¢+][I-I d*]e-S, (7) 

where 

S =  S 1--I- S 2 +  S v +  SH , 

S1 =fl~E[1- ReUo], 
[] 

s2 = B2E [1-  ½Tr Vo], 
rn 

S v = - 2 ~, Re(  ~+ U~,~V~,~q~+, }, 

s . = x E ( * ; , o -  2 (8) 
n 

Here U and V denote respectively the U(1) and SU(2) plaquette products, and 

¢0 (9) 

is the (complex, I w = ½, Y= 1) Higgs field associated with each site n. Links Un, ~ 
and V,,~, connect sites n with nearest neighbour sites in direction it, and each term 
in each sum of eqs. (8) appears exactly once. The model defined by eqs. (8) has the 
correct formal continuum limit of the standard model [24]. 

It is useful at this point to introduce the simplification of a fixed-length scalar 
field. This reduction is equivalent to taking the limit of large ~, in eqs. (8), the 
consequences of which are discussed in sect. 5. Following the rescaling # ~ ¢'~/i, 
the action is given by 

S ~-~ S 1 + S 2 + S L ,  (10a) 

where 

SL= - 2 ~  ~. Re{ ~+ U~,~,V~,~,~.+~,), 
r/,/x 

t~ + . ¢~ --- 1, Vn. (10b) 



502 D.J.E. Callaway, R. Petronzio / Standard model 

This theory possesses [24] three phases: 
(i) a confined phase, in which the free energy required to separate a pair of test 

charges increases without bound as the distance between them grows; 
(ii) an electrodynamics or "Coulomb" phase, where interparticle forces between 

test charges obey Coulomb's law; and 
(iii) a "Higgs"  phase, where spontaneous symmetry breakdown occurs. The 

significance of these phases for the flow diagram is discussed below. 

4. Limits of the lattice standard model 

It is worthwhile to examine several limiting cases of the SU(2)×  U(1) Higgs 
theory before presenting the results for the full model. Specifically, we consider (i) 
the 0(4)  XY-model (or non-linear sigma model), which is the limit of large fll and 
f12; (ii) the U(1)-Higgs limit of large f12 (note that the Higgs field transforms as a 
global SU(2) doublet); and finally (iii) the SU(2)-Higgs limit of large ill. 

4.1. THE 0(4) XY MODEL (NON-LINEAR SIGMA MODEL) 

This model is the limit of the fixed-length SU(2) × U(1) lattice standard model 
when fli and f12 increase without bound. It is defined by an action 

Sxy = - 2 x  E Fn'Fn+a, ( l l a )  
n, / t  

where n is a lattice site and / t  is one of the four unit vectors connecting that site to 
its nearest neighbour in one direction. Thus each nearest-neighbour pair is summed 
once. The F n are column vectors of four real fields fn, ~: 

subject to the constraint 

[L,I I 
( l l b )  

~_,(f~,~)2= 1. ( l l c )  
i 

For reasons which will become evident in the SU(2)-Higgs limit discussed in 
subsect. 4.3, we have chosen a scale factor of 3 for the blocking transformation. 
Thus the original (or "site") system of size L d is divided into ( L / 3 )  a hypercubes, 
each containing 3 d sites. The block fields { F'} are then calculated by averaging the 
( F } over each block. Specifically, 

P [ { F ' , F } l ~ F = I - I ~ [ f n t ,  i - N n  ,1 ~ f~,i] I-I d f . ,  (12a) 
{ f ' )  [ n ~ block ( f )  
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where 

\211/2 

ensures that F,' , .  F , '  = 1. 
We find that the block action is well-described by a form 

S j y = - 2 r '  E F.'.F.'+~,,. (13) 
rd,/x' 

(Of course, in general S' contains an arbitrary number of terms. However, if the 
blocking transformation is sufficiently comprehensive, the assumption eq. (13) is a 
highly accurate truncation, and leads to the definition of an "effective" coupling r~ff 
which describes well the critical behaviour of the system.) 

The (effective) block coupling x' can be derived by a generalization of the method 
described in sect. 2. Rather than varying a single field, however, an infinitesimal 
rotation in group space is performed. Under such a rotation, 

F.' --+ (1 + eijRij)F .' 

-F . '+A . ,F . ' ,  (14a) 

where R~j is the rotation matrix 

( Rij) a b ---- e l  j a b .  (14b) 

In eq. (6) the fact that the measure ~q~' is invariant under infinitesimal transla- 
tions leads to a set of identities between various expectation values. Here, the 
integration measure ~ F '  used in the definition of the vacuum-to-vacuum transition 
amplitude (the "partition function") Z 

+oo(0xyl0xy)_~ = Zxy = f~F' e-S'y (15a) 

is invariant under group rotations eq. (14) and leads to a corresponding set of 
identities (cf. eq. (5b)): 

f~F 'a . , [O. , {  F'}e-S;'q =O. (15b) 

In eqs. (5), f ( x )  could not be invariant under the reflection x ~ - x ,  else only a 
trivial identity would be implied by eq. (55b). The corresponding requirement here 
is that O,,{ F'} not be rotationally invariant. Instead each O,,{ F')  must be of the 
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where I (  F'} 
Fd,- Fb', ). It is natural to choose 

O,,{F '}  = A , I { F ' } ,  (16) 

is invariant under rotations (i.e. is constructed from quantities like 

which leads to the equations 

where 

I{  F'} = S~y{ F ' } ,  (17) 

(F,'RijR~tG~,) + 2x ' ( [F, ;Ri jG' , ][F, ;Rk ,G' , ] )=0,  (18a) 

G',- E (F.;+. + F.'_.). (18b) 
t L 

Equations (18) are a trivial identity unless i and j equal k and l in either order. 
Contraction with 8~kSjt with the use of the identities 

eq.beijca = 2 ( a . b 6 c a -  ~.~ba), 

yields the result 

R q R i j =  - 6 " 1 ,  (19) 

2.,3(F.'. C',) 
2K'= E, ,((G' ,  • G',) - (G ' , -F , ' )  2) (20a) 

r.,(c,,.4 

where in an obvious notation 

so that 

(20b) 

F ' .  G; = 0, (20e) 

G 'z = G~ 2 + G~ 2 . (20f) 

(The extra sum on n' is introduced in eqs. (20) to restore translation invariance.) Of 
course, many other functions I{ F ' )  can be used in eq. (16) to generate different 

G ~ -  F ' .  G',  (20c) 

G~ - G ' -  ( F ' .  G ' )F ' ,  (20d) 
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Fig. 1. Plot of g '  versus g for the four-dimensional 0(4) XY model. The solid line (~'  = ~) indicates the 
location of the fixed point ~*; the broken line is the least-squares fit. 

equations and to extract any other couplings present in the block action. Perhaps 
surprisingly however, the simple truncation eq. (13) provides a reasonable descrip- 
tion of the critical behaviour of this model. 

This 0(4) model was simulated on a 64 lattice, using the standard algorithm of 
Metropolis et al. [25]. The block coupling ~' (as defined by eq. (20)) was measured 
over 1500 iterations, following 150 "equilibration" iterations. The result is shown in 
fig. 1. A fixed point is clearly in evidence, and a least-squares fit to the 11 points 
shown yields 

2x* - / 3 *  = 0.56, (21a) 

~K 
t i¢' 3 y -  ~ = 7.8, (21b) 

y = 1.9, (21c) 

1, = y-1 = 0.54, (21d) 

where the 3 in eq. (21b) is just the scale factor of the blocking transformation. 
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These figures can be compared with known results. A rigorous lower bound on 
the critical coupling is provided [25] by the mean field theory estimate: 

c >_ (22) 2Kc = &,y _.. , 

while a rigorous upper bound is given by [26, 24] 

2K c = & ~< 0.622. (23) 

Additionally, an expansion in powers of the inverse coordination number q-1 (for a 
hypercubic lattice q = 8) yields [27, 24] 

2x ~= ~8~y = 0.6055 + O(q-6 ) ,  (24) 

where the q-5 term makes a fractional contribution of 5 x 10 -3. 
For the exponent v, the mean-field exponent v = ½ is expected. The anomalous 

dimension of the field F 2 is given by [28] 

"yV 2 = 2 - v -1 (25) 

and vanishes if v = ½. It can be seen that the results of our truncated calculation 
agree with known values. Especially interesting is the fact that x* well approximates 
K c, for this close correspondence is not  guaranteed by universality, and thus 
provides a stringent check of eq. (13). We therefore proceed with confidence to the 
next limit. 

4.2. THE U(1)-HIGGS LIMIT MODEL 

In the limit of large/32, the system reduces to a U(1) gauge field coupled to a 
fixed-length scalar with a global SU(2) symmetry. This model has been examined 
previously [24, 29] and exhibits a distinct three-phase structure. The simpler abelian 
Higgs model with a single (complex) component scalar field has also been well- 
studied by analytical [30] and numerical [31,10] techniques. 

This U(1)-Higgs limit model is defined by an action 

Sux = S 1 + SL1, 

S, = , 8 , 2 ( 1  - cos 0D), 
[] 

with 

& ,  = - 2~ E R e ( ~ . +  U . , . ~ . + e ) ,  
n,j~ 

0o = 0.,~ + 0 .+ . , . -  0.+~,~- 0.,., 

(26a) 

U . . ~ e x p ( i O . , ~ ) ,  (26b) 
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where • is the complex two-component scalar field: 

507 

1~+12 + 1~-12= 1. (26c) 

The connection with the 0(4) XY model (non-linear sigma model) discussed above 
is more transparent when SL~ is rewritten in terms of the real four-component fields 
F n of eq. ( l lb)  and matrices Rij of eq. (14b): 

SI,1 = - 2 x  • F.exp[-0,,,~(R12 + R34)] Fn+tt. (26d) 

The blocking transformation for the scalar field is a gauge-invariant generalization 
of eqs. (12). The block scalar field ~,', is defined by the projection operator 

where 

P [ { ~ ' } , { ~ } ] N ~ =  I - I S [ ~ " - ~ . ' { ~ } ] N ~ ,  (27a) 
(4'} 

1 
~"'{~} = iV., ~ U"'~U~+~'""'~n" (27b) 

n ~ block 

In other words, the block scalar field ~" is simply the average of the (parallel-trans- 
ported) site scalar fields ~n in the block. The factor Am, enforces the constraint 

I~,1 z= 1. (27c) 

The block point is defined to be that site point in the cube which is nearest to the 
origin (all coordinates are taken as positive in the periodic lattice). Typically 
multiple paths of parallel transport exist from this block point n' to each site point 
n in eqs. (27). In such cases, the arithmetic average of all of the shortest paths is 
used, as in ref. [10]. 

The projection operator for the gauge fields { 8'} is defined by: 

q 
(28a) 

where the/~j are the arguments of the paths shown in fig. 2: 

/ Z 
paths 
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Fig. 2. Schema of paths included in the U(1) block link. The ellipsis ( . . . )  refers to obvious rotations. 

The inclusion of these paths allows a good description of the critical behaviour 
expected [32-34] at f l -  1. 

Next the method of extracting the block action is described. The block action is 
approximated by a form 

S•z -= f l / ~ [ 1  - cos Ot~ ] 
[] 

- 2 #  E Re( ~" + U~, ~ ' + a )  (28c) 
rt,/x 

(cf. eqs. (26)). If the procedure used to obtain eq. (20) is applied to this U(1)-Higgs 
limit model, the result is 

where 

and 

2 K  ! 

so that 

E,3(Re(c~ +" ~ ) )  

~ . ( c ' + . c .  - [Re(c~ '+.  ~,)]2)  

2 . 1 ( I c k  ,.I 2) ' (29a) 

t - -  t ! t ~  t c . =  E ( U . , . ~ . + . +  U . _ . , . e . . )  (29b1 
~t 

c~-  Re(c '÷- ~ ' ) ,  

c~ = c ' -  Re(c '÷. ~ ' )~ '  (29c) 

Re(c~ +- q~') = 0, (29d) 

Jc'] 2 = c~ 2 + Ic~_ 12 . (29e) 
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The equation for fl{ follows from (cf. eq. (15)): 

fNo'3@q[O { O'}e -sh']  = 0 .  (30) 

Equation (30) (like eq. (5b)) is a trivial (0 = 0) identity unless 0{6 '}  is odd in the 
(8 '}.  It is convenient to choose 

3S{ 1 
0{8'} = 38,3 fl{ 3e,5 (1 cosSt~ ) (31) 

(compare eqs. (16) and (17)). Equations (30) and (31) lead to a simple linear 
equation for fl{ in terms of x' and various expectation values. (If, instead of eq. (31), 
0{8'} = 3S'/30i' j had been employed, a quadratic equation for fl{ would have 
resulted.) A similar procedure was employed by us [9,10] to study the abelian Higgs 
model. Note  that in the event that corrections to eq. (28) are required, other 
operators 01, 02, 03 . . . .  can be inserted in eq. (30) in order to generate a set of 
equations for all couplings in the theory. Thus our calculation can be systematically 
improved to arbitrary accuracy. 

The numerical results are presented below. In all cases the theory was formulated 
upon a 64 lattice and blocked to a 24 lattice. The standard routine of Metropolis 
et al. [25] was employed for both the gauge and scalar fields. The step size A8 for 

i ° .00 / 

I fFnNFINEMENT i COULOMB 

0 1 "  2 - 

Fig. 3. Flow diagram for U(1) gauge theory coupled to a (globally) SU(2)-invariant scalar field. 
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the gauge field was readjusted after each update of the lattice to give approximately 
50% acceptance. New "trial" scalar fields • were generated randomly on a 
four-sphere, with up to 20 hits per site applied to ensure greater than 90% overall 
acceptance. 

The flow diagram for this U(1)-Higgs limit model is shown in fig. 3. Approxi- 
mately 100 points were used to generate this flow diagram. Four fixed points are 
present, labelled E, F, G, and T. The flow diagram corresponds well with the phase 
diagram [24, 29] of the theory. This close correspondence is an indication that our 
truncation approximation (eq. (28)) likely provides a valid description of the critical 
behaviour of the model. Each of the three phases (confinement, Higgs, and Coulomb 
or "electrodynamics") is distinct and possesses its own sink (labelled respectively 
SC, SH, or SE). 

The fixed point G occurs in the limit of large ill, where the theory approaches the 
0(4) XY model (or non-linear sigma model) discussed in subsect. 4.1. The critical 
values for this fixed point have already been given in eqs. (21), and are consistent 
with the numbers expected for a trivial gaussian theory. Much more interesting is 
the fact that the gauge coupling g2 = fl~-i is irrelevant along the Higgs-Coulomb 
phase transition. Thus (except for possibly the tricritical point T) in this scenario the 
entire Higgs-Coulomb phase transition has mean-field gaussian critical exponents. 

Consider next the pure U(1) gauge limit (• = 0). A fixed point is clearly in 
evidence (see fig. 4) in a plot of fl' versus r ;  however, the critical region is quite 
narrow and we expect relatively large errors in the determination of the associated 
critical exponent. Nevertheless a least-squares fit to the five points between fl = 1.054 

1.10 

1.05 

1.00 
1.00 

I I I 

S e l  

T, / 
/ "I" 

/ i ' l  j 
1.05 1.10 

Pl 

Fig. 4. Plot of fl '  versus fl for a pure U(1) gauge theory. The solid line (fl '  = r )  indicates the location of 
the fixed point fl*; the broken line displays the result of a least squares fit. 



D.J.E. Callaway, R. Petronzio / Standard model 511  

and fl = 1.056 yields 

13" = 1.055, (32a) 

a13' 
3 yF -- - -  = 25.0, (32b) 

aft 

YF = 2.9 ± 1.0. (32C) 

Each point in fig. 4 was generated by measuring 13' over 1250 iterations following 
thermalization for 125 iterations. 

These critical indices may be compared with the result y = 4 (corresponding to 
aft'/a13 = 81) expected [35] for a first-order phase transition. We found some 
evidence suggestive of a first-order phase transition in the compact U(1) theory [10] 
and in the large-r limit of the non-compact U(1) theory [9] (dual to the compact 
model in this limit [36]). However, a demonstration of a first order transition is in 
principle impossible within the MCRG, for y must equal four (i.e. the number of 
space-time dimensions) exactly in this case, and a MCRG calculation always has an 
associated error. Evidence suggesting that this transition is first order has been 
presented by other authors [34]; still others [33] find a second-order transition with 
v = 1 / y  = 0.3. 

A further interesting result is the fact that in our scheme the fixed point F is 
attractive along the line segment TF, implying that the critical behaviour along this 
segment is the same as that for the point F. This result is supported by an argument 
of Fradkin and Shenker [30], generalized by Shrock [24], which states that for small 
x the model defined by eqs. (26) is equivalent to a pure U(1) gauge model with 

131,e l f  = 131 "[- 1 K 4  At- " ' "  • (33) 

There also exist in the flow diagram a tricritical point (labelled "T")  and a fixed 
point (labelled "E"). In each case the exponents were determined by calculating the 
block couplings at each of 25 points forming a 5 x 5 square centered (approxi- 
mately) at the fixed point. These couplings were measured over 500 iterations after 
50 equilibration sweeps through the lattice. The results are as follows (note that, as 
per the discussion of eqs. (32), Yl in eq. (34) is likely to be an underestimate): 

T: 13" = 1.1, 

x* = 0.4, 

Yl "~ 3.0, 

y== 2.1; (34) 
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E: /3* = 0.4, 

X* = 0.9, 

YE = 3. + 1. (35) 

In the case of the fixed point E, our results suggest the existence of a phase 
transition along the axis fll = 0. Such a phase transition is not possible in the 
two-component (i.e. one complex  component) abelian Higgs model [30, 31], for in 
that case the scalar field can be transformed away by a gauge rotation. A phase 
transition at vanishing fll has been observed numerically [24, 29] in this limit model. 
Arguments [24] based upon the obvious connection with an annealed spin model 
suggest that this transition is second order, implying [35] that YE is less than four. 
At/31 = 0, y is exactly 2 [24]: if our flow structure is correct, that implies that y at 
the fixed point E must be 2. 

4.3.  T H E  S U ( 2 ) - H I G G S  M O D E L  

This model is the limit of the lattice standard model when /31 is allowed to 
increase without bound. We have previously made a (very crude) MCRG study of 
this model [7]; here the results of an improved study are given. Nevertheless, it is 
our contention that this sector of the theory is the most difficult to understand 
quantitatively. Some of the problems associated with MCRG calculations are 
described below. 

The model is described by an action 

Ssu2 = $2 + SL2, (36a) 

SL2 = - -  2x R e ~  ~+ Vn,~n+U, (36b) 

with the conventions established previously. The fundamental representation of 
SU(2) is employed for the link field V, which can then be written 

V =  a o +  i a . a ,  (37) 

where the a are the Pauli spin matrices, 

OaOb = ~ab -~- ieabflc (38) 

and a~ is a four-component object satisfying the relation (so that V has unit 
determinant): 

a 2 - a~,a ~' - a02 + a 2 = 1. (39) 
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The Haar measure for the group is then given by [37] 
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1 
d V =  2~rz~(a 2 -  1)d4a. (40) 

The three parameters ap (p  --- 1, 2, 3) can be defined implicitly by 

= (cosieD, i- 1 sinl-I) (41) 

in accordance with the standard notation: 

V=exp(io..). (42) 

The sum of SU(2) elements V differs from another SU(2) element by at most an 
overall normalization factor. This serendipity suggests a definition of the blocking 
transformation for the gauge fields of the form 

where 

VSUlll 
V.' = (43a) 

n' ~ det Vs~ ' 

Vs~m- E Vpath (43b) 
paths 

and Vpath refers to the ordered product of V's along a given path between the two 
block sites connected by Vn' ' ~. The specific choice of paths is quite important for the 
SU(2)-Higgs model and is discussed in detail below. 

The block scalar field is (as with the U(1)-Higgs model discussed above) defined 
as the parallel-transported average of all scalar fields in the block, normalized so 
that 4)',+ • 4)', = 1. Where multiple paths of parallel transport exist, the arithmetic 
mean of all of the shortest paths is taken. 

The equations for the effective block couplings are derived by a procedure 
analogous to that given in eqs. (14). Under an infinitesimal SU(2) rotation in group 
space, 

4)" -)  (1 + ie. o)4)" --- 4)" + A 4)', (44a) 

V.' .  + (1 + i t .  o)  V.',~ - V;,~ + A.,~Vn',.. (44b) 

Following the same procedure as for the U(1)-Higgs limit described above, the 
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(effective) renormalized couplings ~' and/3 '  are extracted by use of the relations 

(45a) 

f~'~,'+~v'a.,.[(a.,~s~)e -S~U:] =0, (45b) 

which lead to a pair of simultaneous linear equations as before. 
As a practical matter, it is useful to note that the scalar fields for both the site and 

block systems can be absorbed by redefining the V.,~ and V.;,. through gauge 
transformations [7]. Thus the scalar fields need not be simulated directly, and the 
action for the site system can be written 

with 

Ssu2 = $2 + SL2, (46a) 

ffm = - 2K E Tr V.,~. (46b) 
n , p ~  

After the block links V. ' .  are calculated (by first averaging the appropriate paths 
via eqs. (43) and then removing the explicit block scalars ~' ,  by a gauge transforma- 
tion [7]) the block ac t i o n -  within the context of the two-parameter truncation 
assumed here - also can be written in the form eqs. (46). The equations for the 
renormalized couplings implied by eq. (45a) are: 

~-~n<bo n) 
2x' ' (47a) 

1 E.3(b.'b.) 

where 

b0, . = ½Tr(W.), 

and 

b. = ½i Tr(oWn), (47b) 

w o - E [  °_. +(  , V' . V' )t} (47c) 
/z  

(The average over n in eq. (47a) is inserted in order to increase statistics.) Equation 

(45b) yields 
! _ _  t t t 

E.,.(3po,. ,~ , 2~ a . , . . p . , . )  (48a) 
/3~ = E . . , , ( p " . . p ' , . >  ' 
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where 

a.,~,- ½t Tr(oV.,~), 

p'.,~, -= ½i T r ( o Q . , . ) ,  

p~,.,~-= ½Tr(Q., . )  

' ' "V.'  , t . V ,  . t  Q,,,~,- E v,,,~v,,+~,,.( ,,+.,j,) (,,,.) 
±v 

(48b) 

(48c) 

(48d) 

(48e) 

and again the sum over n and # is inserted in order to improve statistics. 
In each of the following analyses, the configurations of the SU(2)-Higgs model 

were generated by an attempered heat-bath routine based upon ideas of Creutz [37]. 
The block couplings were measured on a 64-~ 24 lattice over 500 iterations, 
following 50 equilibration sweeps. The results of a 9 4 --* 3 4 blocking were virtually 
identical to those of the 6 4 ~  24 blocking, and the inclusion of gauge-invariant 
operators equivalent in the 0(4) limit to second- and third-neighbour scalar-scalar 
couplings produced only small qualitative changes in the flow structure. 

It remains to specify the paths included in the sum in eq. (43b). The simplest 
choice is to block by a scale factor of two and choose the paths in figs. 5a and 5b 
along with obvious permutations). This is a procedure originally advocated by 
Swendsen [38]. However, the renormalization group flow structure (fig. 6) generated 
by this recursion process is inconsistent with our two-parameter truncation. In 
particular, the separatrix (governed by the fixed point D with critical index YD -- 1) 
extends from the gaussian 0(4) XY model fixed point G through the half-line f12 = 0 
and continues on to negative f12. Yet obviously when f12 vanishes the links are 
decoupled and no phase transition can occur. 

b) d) -,,- 

Fig. 5. Schema of paths included for various SU(2) blocking transformations: diagrams (a) and (b) show 
the Swendsen paths; diagrams (c) and (d) display our choice. 
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" , ~ / I  • r • • ~ /t 

2 

K 

1 

fi 

I 

- ' ~ - / /  ~ "~ ~ 1 ~ 2 
P2 

Fig. 6. Inconsistent flow diagram for the SU(2)-Higgs model generated with Swendsen paths. 

The problem is that each site link appears in many distinct block links in the 
Swendsen procedure, and so this blocking method generates spurious interactions 
between block links when the site links are decoupled. One solution to this problem 
is to employ a blocking scheme proposed previously by us in ref. [17]. This scheme 
employs a blocking factor of 3 and uses only the paths displayed in figs. 5c and d. 
No spurious interactions are introduced, for no site link appears in more than one 
block link. A possible drawback of the method is that in four dimensions only 
one-fourth of the site links are included in the paths summed in eq. (43b), so a 
two-parameter truncation may prove inaccurate. Nevertheless, the flow structure 
(fig. 7) generated by this procedure agrees well with its known phase structure [39], 
which allows us some hope for a qualitative understanding of the model based upon 
our simple analysis. 

The flow structure in our truncation scheme is depicted in fig. 7. Approximately 
100 points were used to generate this flow diagram. The fixed point G is the usual 
gaussian phase transition of the 0(4) XY model. We conjecture that another fixed 
point (labelled "M" in the figure) exists. This fixed point is presumably marginal 
(Yt = 0) in the direction of the separatrix connecting it to point G. If the separatrix 
MG represents a phase transition, then the flows along it must terminate in a fixed 
point. The critical exponent which governs this phase transition can be determined 
by measuring the derivatives of the renormalized couplings in the direction orthogo- 
nal to this separatrix. Evidence which suggests that this separatrix represents a 
first-order phase transition has been presented [8]; if this is the case then [35] the 
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1 

/ c 

1 2 3 4 " 

~2 

Fig. 7. Flow d iagram for the SU(2)-Higgs model  genera ted  with our  paths.  

point M is a tricritical point with exponents Yl = 0 and Y2 = 4. In our blocking 
scheme (with scale factor 3) this result would imply that the matrix OK'/OKt~ has 
eigenvalues 3 y, = 1 and 3 y2 = 81. It is difficult to measure a matrix with such 
disparate eigenvalues numerically, so our evidence for the existence of a marginal 
fixed point M is limited to an inference from the flow structure. The large scale 
factor b = 3 in use here clearly hampers the analysis. It  is worth mentioning, 
however, that blocking transformations with a scale factor as small as b = v~- in two 
or four dimensions for lattice gauge theories can be constructed [16]. A more 
accurate study of the SU(2)-Higgs model should therefore be feasible. 

Our conjecture that the point M is a marginal fixed point also implies that scaling 
violations could exist along the separatrix connecting M with the gaussian point G. 
The reasoning behind the idea [40] that marginal operators are connected with 
logarithmic scaling violations can be seen by considering the behaviour of two 

infinitesimal scaling fields /~ and ~2 near a critical point /~' = / ~  = 0 .  (For 
- * * (K - ~ t ) / ~ t  if the M G  sep- example, one might have /-t 1 = (f12 f l 2 M ) / f l 2  M' /'L2 ~- 

aratrix was perfectly horizontal.) Suppose that under the rescaling of the lattice 

spacing a ~ a l -  = e/a the fields/~1(I) and /~2(/) flow in a fashion described by the 

equations 

Ol = Y l l ~ I  -Y111( ,111)  2 + " " " , (49a) 

o.,(t) 
Ol =Ya2/'ta -Y2t2~dx2 + " " " " (49b) 
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If Yn is greater than zero, the fixed point /z~' = / ~  = 0 has two relevant directions 
(i.e. is a tricritical point) with exponents yl and Y2: 

~1(l) =~ l (O)eY ld -a{" ,  (50a) 

#2(1) =/x2(0)ey22t- aY22. (50b) 

If, however, YH is zero (corresponding to a marginal field /~1) then if/~1(0) is 
positive it follows that for large l 

1 1 
, (51a) 

/~1(l) Ynl l In a t 

/~2(l) ~/~2(0)eY2d. l a (51b) 

- aY22(ln at) ° , (51c) 

O =-- Y212/Ylll (51d) 

and eq. (52c) implies [40, 41] that thermodynamic quantities which depend upon/~2 
possesses logarithmic scaling violations. No such scaling violations occur if/h(0) ~< 0. 
It is interesting to note that the perturbative renormalization group predicts [41, 40] 
logarithmic corrections to mean-field scaling in pure ~4 theory; should these be 
present at the gaussian fixed point of the non-perturbative theory then (as shown by 
Aragao de Carvalho et al. [5]) triviality of the pure q~4 theory is implied. No 
corresponding result is known for the SU(2)-Higgs model however, and we mention 
this point only to illustrate the potential importance of corrections to scaling. 

5. Analysis of the SU(2) × U(1)r  standard model 

The full lattice standard model (as defined by eqs. (10)) is now considered. The 
blocking schemes for the U(1) and SU(2) gauge fields are as described in subsects. 
4.2 and 4.3 respectively. The block scalar field is defined as the normalized average 
of all scalar fields in the block, parallel transported with the U(1) and SU(2) gauge 
fields. As usual, where multiple paths of parallel transport exist, the arithmetic mean 
of all the shortest paths is taken. 

The equations used to generate the block-renormalized couplings (as usual, 
assuming that the block action is described well by an effective action of precisely 
the same functional form as the site action) are determined by the invariance 
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equations 

where the notation 

TrA..[(A.,S/.)e -s'] =0 ,  

TrA., ~[(A., ,S~)e -s'] =0 ,  

s I--o, Tr ~-~-;- 
~Oij L l~°iJ ] ] 

(52a) 

(52b) 

(52c) 

T r - f ~ v f D v f ~ * + f ~ *  (52d) 

i.e. 

( 1 ) (55a) w~¢.= o ' 

W + W. = 1, (55b) 

W = (  (~'+)*- 4'5 (~)*)~'+, (55c) 

where IV, is defined so that 

1¢%12+ 1¢012= 1~'12= 1. (53c) 

The block scalar fields can in general be eliminated by performing gauge rotations 
on the SU(2) and U(1) fields. With the gauge chosen here, it suffices to rotate only 
the SU(2) gauge fields: 

V." ~ ~ W.V." .W++~, (54) 

where N is chosen so that 

has been used. 
As a practical aside, we simulated the site system in a gauge where each of the 

complex scalar site fields had an upper component equal to unity and a zero lower 
component. The block scalar fields were calculated by the above-described parallel 
transport, 

~'=N-lpat~hs{[p~ath(UV)]'(~)) (53a) 
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Fig. 8. Flow diagram for the lattice standard model. 

so that 

and 

U~, (56a) 

Tr V~, (56b) 

• "+U,',,V,',~'+~ (56c) 

remain invariant. 
Thus (as in the SU(2)-Higgs limit discussed in subsect. 4.3.) no explicit reference 

to the scalar fields appears in the calculation. Since expectation values of the various 
functionals used in the calculation of block couplings are ratios, the spurious 
integration over gauge degrees of freedom simply drops out. 

The flow diagram for the lattice standard model is displayed in fig. 8. We used in 
this case approximately 500 points. It is consistent with the phase diagram found 
[24] by Shrock. Throughout the flow diagram flz decreases monotonically, and the 
fixed points T and E found in the SU(2)-Higgs model (fig. 7) merge into a new 
multicritical point C in the centre of the cube. This fixed point is evidently marginal 
(Y3 = 0) in essentially the r2 direction, and is located at (~, ill, f12)- (0.9,0.9,1.6). 
The critical exponents Yx and Y2 for C were determined by a double least-squares 
fit to 27 points, reported in table 1 (with 500 measurement iterations following 100 
equilibration steps) in a plane located at r2 = 1.75. The results are Yl = 1.3, 
Y2 = 0.03. The measurement was repeated at fiE = 1.60, the result is Yl = 1.4, 
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TABLE 1 
f12 = 1.75 plane of the coupling constant's flow around the point C 

521 

(tim, k) (fl;,k') 

(1.0, 0.75) (0.841, 0.82) 
(0.85, 0.9) (0.77, 1.12) 
(0.85, 1.0) (0.85, 1.45) 
(0.8, 0.9) (0.66, 0.94) 
(0.8, 1.0) (0.76, 1.33) 
(0.8, 1.1) (0.84, 1.71) 
(0.75, 1.1) (0.69, 1.56) 
(0.9, 0.9) (0.69, 0.73) 
(0.9, 0.9) (0.87, 1.21) 
(0.85, 1.1) (0.885, 1.69) 
(0.95, 0.8) (0.81, 0.87) 
(0.95, 1.0) (0.94, 1.44) 
(0.95, 0.9) (0.94, 1.29) 
(0.9, 0.95) (0.89, 1.38) 
(0.85, 0.9) (0.77, 1.12) 
(0.9, 0.85) (0.80, 0.94) 
(0.875, 0.95) (0.855, 1.32) 
(0.875, 0.85) (0.71, 0.875) 
(0.875, 0.9) (0.845, 1.2) 
(0.85, 0.85) (0.62, 0.72) 
(0.85, 0.95) (0.825, 1.29) 
(0.875, 0.9) (0.845, 1.20) 
(0.925, 0.85) (0.83, 1.03) 
(0.925, 0.9) (0.92, 1.31) 
(0.925,0.95) (0.93, 1.37) 
(0.875, 0.85) (0.71, 0.875) 
(0.875, 0.95) (0.855, 1.32) 

Y2 = - -0 .02 .  As suggested by a slice (fig. 9) of the flow diagram, the fixed point C is 
doubly marginal in essentially the x and f12 directions. 

The flow diagram for the three-parameter theory possesses two main sinks - the 
sink S c for the confinement phase (located at 0¢, ill, f12) = (0, 0, 0)), and the sink SI~ 
for the Higgs phase (located at (x, ill, f12) = (0, oo, 0)). It has been shown [24] that 
the line segment SR corresponds to the phase transition at f l l -  I in a pure 
fundamental representation U(1) gauge theory. Our flow diagram predicts that this 
phase transition is governed by the fixed point F', which is a pure U(1) transition 
(fig. 4). 

Our most interesting result is the fact that for finite f12 no fixed points with three 
relevant directions appear. This finding suggests that (with the possible exception of 
a continuum limit obtained from an approach to the point C from the direction of 
small f12) a non-trivial continuum limit of the theory possesses at most two 
independent renormalized parameters. 
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I 2 

Fig. 9. " S n a p s h o t "  of fig. 8 when  f12 = 1.75. 

The reasoning [41] behind this connection between the number of independent 
renormalized parameters and the relevant directions of a fixed point can be 
summarized crudely as follows. Under a blocking transformation, the lattice spacing 
increases. Thus, in order to take a continuum limit (by decreasing the lattice 
spacing) one must follow the renormalization group flows given here backwards 

while keeping the renormalized parameters of the continuum theory fixed. In order 
thus to approach a fixed point while holding n renormalized couplings fixed, it must 
be so that the fixed point has at least n relevant directions. 

It may be that a continuum limit exists at the fixed point C when it is approached 
from the direction f12 < fl~C" Such an approach implies that f12 is bounded, so that 
corresponding bounds on the renormalized parameters of the fl2,R possesses an 
upper bound, an upper bound on the Higgs mass is implied [11,12]. If no 

continuum limit is reached by approaching C in this direction, our analysis suggests 
that any non-trivial continuum theory of this model has a calculable Higgs mass. 

Several important assumptions of this work must be kept in mind. First, ours is a 
truncated calculation - we have not demonstrated that additional relevant operators 
do not exist in the fixed length limit. However, it would be somewhat surprising if 
this was the case, given the accuracy of the flow diagram and critical exponents in 
comparison with the phase diagram and other known results (summarized in ref. 
[24]). 

A second and more important point is the fact that we work with a model where 
the scalar field has a fixed length. This is equivalent to studying the theory at a fixed 
(infinite) value of the bare quartic coupling constant. If at the appropriate fixed 
points in the full parameter space (where the quartic coupling is allowed to vary) the 
quartic coupling is relevant, no further constraints are likely to be generated. 
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However, if the quartic coupling is always irrelevant, then even if the continuum 
limit of the theory is reached by approaching fixed point C from the direction of 
/32 </32" (C), the number of renormalized parameters of the theory is less than the 
number of bare parameters and the Higgs mass should be predictable at such a 
continuum limit. 

Another important assumption of our work is the fact that all our conclusions are 
based upon the results of a single blocking transformation. Unfortunately (and this 
is a serious drawback of the present study) the blocking transformation we applied 
has such a large scale factor (b = 3) that a second blocking (from a (18) 4 lattice) was 
unpractical. We are presently developing methods involving smaller scale factors 

[431. 
Finally, it should be mentioned that this calculation makes no statements about 

the validity of hyperscaling in the full SU(2) × U(1)r model, for it is impossible to 
check hyperscaling within the framework of the present Monte Carlo renormaliza- 
tion group [42]. 

6. Summary and conclusions 

We have presented the results of the first Monte Carlo renormalization group 
study of the lattice SU(2)× U(1)r standard model (minus fermions). Within a 
well-defined minimal truncation scheme, the flow diagram, fixed points, and critical 
exponents were calculated. A most remarkable result was found -  in our scheme 
there are no fixed points at finite f12 with three relevant directions, suggesting that if 
a non-trivial continuum theory exists then the Higgs mass may be bounded or 
predictable. 

Like any numerical simulation, ours relies upon specific and systematically 
improvable assumptions. Foremost amongst these is the truncation of the flow 
equations to a space of three couplings. We have outlined in detail the procedure by 
which this approximation can be improved to arbitrary accuracy; further calcula- 
tions should certainly be performed. Nevertheless, we point out that our flow 
diagram and resultant critical exponents imply (and therefore agree with) many 
known results. Most of the remaining uncertainties are well-known to numerical 
analysts. For example, it is in general impossible to prove that a simulation has 
converged or that the infinite-volume limit has been reached. Although numerical 
calculations such as ours cannot therefore even in principle provide a proof of a 
result, they can produce evidence for its validity and, we hope, inspire further 
interest in the problem. 

This study would not have been possible without the use of the Livermore MFE 
Cray. The authors gratefully acknowledge the assistance of M.A.B. B6g and P.K. 
Williams in obtaining this computer time. 
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