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If a large square plate of a type 1 superconductor is placed in a perpendicular magnetic
field, the field will penetrate it in a pattern of domains. The intermediate-state problem is to
predict this pattern. In the critical Ginzburg-Landau theory, the horizontal and vertical
directions of the plate are essentially Fourier conjugate coordinates, like position and momen-
tum in quantum mechanics. Thus, the intermediate state allows us a rare direct glimpse of
quantum phase space. It is also demonstrated that, although Landau’s (1937) textbook model is
inconsistent with the Ginzburg-Landau equations, its qualitative nature is correct. Elongated
structures consistent with a complete spontaneous breakdown of discrete rotational invariance
are predicted. Comments with regard to lattice Higgs simulations are also made.

1. Prolegomena

The problem of the magnetic intermediate state in superconductors is both
extremely fascinating and extraordinarily difficult. Its solution involves the analysis
of highly degenerate ground states and intricate fractal-like patterns on many
length scales (cf. sect. 7) and utilizes arcane mathematical structures that are most
familiar perhaps to the string theorist. Yet, for all the complexity of its solution,
the problem itself can be stated with deceptive ease: Consider a block of type I
superconducting material placed in a weak magnetic field. Because of the
Meissner effect the magnetic field is expelled. As the field strength is increased the
magnetic field penetrates the superconductor. The problem is to predict this
pattern of penetration.

2. Background and synopsis

The simplest illustration of the magnetic intermediate state is a problem
originally addressed by Landau [1] and considered in detail here. Landau’s prob-
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Fig. 1. Geometry of problem. Magnetic field is incident in Z direction, and is a constant |H|= H, at
large z.

lem involved a large square plate of a (type I) superconductor in a perpendicular
magnetic field. Landau predicted that the magnetic field would penetrate the plate
in a periodic series of stripes. Following fig. 1, we take the plate to lie in the xy
plane. Then the pattern predicted by Landau is independent of y and periodic in
x (or vice-versa), consistent with a complete spontaneous breaking of the discrete
[x < y] rotational symmetry of the system.

Subsequent experimental work [2] revealed that the true situation was far more
baroque, involving complex patterns on many length scales. Usually, these patterns
include elongated structures, indicating that Landau’s picture might be a qualita-
tive guide to the nature of the intermediate state. Indeed, if the magnetic field is
applied at a slightly oblique angle, the domain patterns found [3] do in fact
resemble Landau’s model.

Before we are too critical of this early attempt of Landau, it is well to remember
that, at the time (1937) of his analysis, superconductivity was even less well-under-
stood than it is today. Most significantly, his analysis predated the Ginzburg-
Landau equations (1950) [4] and thus Abrikosov’s germinal work [5] which first
distinguished between type I and type II superconductors. Landau’s model was au
fond an exercise in classical electromagnetism, augmented with phenomenological
boundary conditions obtained via the Meissner effect.

By contrast, the analysis presented here is based upon the Ginzburg-Landau
equations, following and extending the classic works of Abrikosov [5] and others
[6,7]. It proceeds by expanding these equations in a perturbation series about the
critical magnetic field above which the superconducting wave function vanishes. A
more complete analysis of the problem probably requires numerical techniques,
such as those presently applied to lattice Higgs models [8]. (In anticipation of such
calculations [9], some remarks pertinent to lattice simulations are included below.)
Nevertheless, even within this insular perturbative domain startling results can be
obtained. At scales larger than the coherence length, the superconductor behaves
as if the x- and y-directions were Fourier conjugate coordinates, like position and
momentum in a one-dimensional quantum mechanical problem (cf. fig. 1). Thus,
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the discrete [x < y] rotation symmetry is unlikely, for only rarely does a wave
function equal its Fourier transform. Indeed, the perturbative solutions to the
Ginzburg-Landau equations are generally elongated shapes, in qualitative agree-
ment with Landau’s construction. From the Fourier conjugation property men-
tioned above the guantitative fallacy of Landau’s model can also be seen. If the
flux patterns are independent of, say, the y-coordinate, then the superconducting
wave function must be an (unlocalized) plane wave in the y-direction. The Fourier
transform of a plane wave is a delta function, so the wave function will be sharply
localized in the x-coordinate, and not the periodic function envisaged by Landau.

3. Landau’s problem revisited

Following Ginzburg and Landau [4], we assume that the free energy density f(x)
of the system can be expanded as

2

- \ hooe 1
F6) =t el ()P + )1+ 5[ Fo- S|+ 2 ()
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where f, is the free energy of the normal material, ¢(x) is the order parameter
(i.e., the superconducting wave function), H is the magnetic field, and the rest are
phenomenological parameters. (It should be pointed out that this formalism is very
general [10] and can be derived [11] from the BCS theory.) This equation can be
rescaled to as to measure

—a\1/2
(x) in units of |y} = (ﬁ) , (2a)
xinunitsof 6=~ (2b)
V—2ma
f(x) —f, in units of —2aly,|*, (2¢)
A(x) in units of ®,/27é, (2d)

where @, =27h/e* is the elementary flux quantum, and ¢ is the coherence
length. Also, we define

m*cz

A= ———
Ay, |ter?’

(3a)

k2= /£, (3b)
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whence
F(x) = fo= 3Dy + L9 (x)> - 1)" + L?H?, (4)

where D =@ — i4 is the covariant derivative. The corresponding Euler equations of
motion are

DYy +y -yl =0, (5a)

—k2[9?°4 - 8(d-4)] = Im[y*Dy]. (5b)

Note the appearance of the Abrikosov parameter k. The value of « determines [5]
whether the superconductor is type I (x <1/v2) or type II (x > 1/V2). Here the
primary concern is type I superconductors, for which the superconducting /normal
domain wall energy parameter is positive. Thus the domain surface area is typically
minimized in equilibrium configurations.

Consider (see fig. 1) Landau’s problem of a large flat square plate of type I
superconductor in the xy plane with a constant magnetic field incident in the
Z-direction. Deep inside the plate and away from the edges the magnetic field H
has only a Z component. If the thickness of the plate is much greater than the
coherence length ¢ (which ranges from 500 to 10000 Angstroms for typical pure
superconductors) then inside the plate H will be essentially independent of z.
Thus

H=H(x,y)é.. (6)
The symmetry of the problem then permits the choice
A=A(x,y)é,. (7)

The Ginzburg-Landau equations (5) are to be solved in a perturbative expan-
sion around the critical region where |H|= H, (which equals one in the present
units). In this regime the order parameter ¢(x) is small, so eqgs. (5) can be
linearized

(DZ+ )y(x) =0, (8a)
where

D,=0+iH,xé,, (8b)

and H, is a constant equal to the magnitude of the applied magnetic field.
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Eqgs. (8) are easily solved by separating variables, i.e.

p(x) =e " r(x), (9a)

{02+ [1 - H2(x —k/HY) ] Jr(x) = 0. (9b)

Note that eq. (9b) is essentially the Schrodinger equation for one-dimensional
harmonic oscillator, with an important difference—the “energy” E equals one!
Away from the xy edges of a large plate, the appropriate solutions for ¢(x) are the
familiar normalizable eigenfunctions, whence

(2n+1)H, =1, (10)

and thus H, < H = 1. The seeming quantization of H, is an artifact of the
linearized analysis [see eq. (54) et seq.]. Thus, it is necessary to include the
nonlinear terms (at least perturbatively) when H, is less than H..

The appropriate solution to the linearized Ginzburg-Landau equation for
H,=H_=1is thus

W(x,y) = [dkexp| —iky — 5(x —k)*|C(k) (11)

where the function C(k) is arbitrary in this limit. Recall that Landau’s model
predicts that | (x, y)I* is independent of y and periodic in x (or vice-versa). But
this would mean that

C(k) ~6(k—ky), (12a)
so that

[ (x, y) |2~ e k0 (12b)

which is clearly not periodic in x. Thus, in the strictest sense Landau’s construc-
tion is (oddly enough) inconsistent with the Ginzburg—Landau equations. This
inconsistency persists in the full nonlinear case.

The present analysis proceeds as follows. First, various interesting properties of
the wave functions eq. (11) are adumbrated. Following this general discussion it
will be shown how the nonlinear terms in the Ginzburg-Landau theory serve to
constrain the function C(k) in eq. (11). Several observations about the allowed
solution space will then be made.
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4. The remarkable structure of the wave function: A glimpse of quantum
phase space

One rather striking property of the wave function in the critical region follows
directly from eq. (11). We construct p,(x), the density in x of the order parameter

pi(x) Efildf(x,y)lzdy, (13a)
=2w/ dk|C(k)|? e~ 07 (13b)

= 27;'3/2[dk|C(k)|zA(x_k) .

Similarly,
p2(¥) Ef_w I (x, y)1* dx, (14a)
=2wf dglC(q))Pe =9 (14b)
=272 [ dalC(a)l’A(y -a),
where
Gl = dk . s
(q) = o (k) (15)

is just the Fourier transform of C(k), and

1
A(s) = —e ™™ (16)
vIr
is a sharply localized smearing function with unit volume.
Recall that distances here are measured in units of the coherence length, which

is microscopically small. At macroscopic distances A(s) — 8(s), and
pi(x) =2m%C(x)I, (17a)
po(y) =2m32C(y) 2. (17b)

From eqs. (17) it is seen that at macroscopic scales, x and y can be thought of as
(Fourier) conjugate coordinates, much like position and momentum in a one-
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dimensional quantum-mechanical problem. The function C(x) plays the role of the
position-space wavefunction in this quantum analogy, just as C(y) corresponds to
its momentum-space counterpart. Thus at macroscopic scales the intermediate
state of a critical superconductor allows us a glimpse of a quantum “phase space”.

This point is worthy of elaboration. Over a half-century ago Wigner proposed
[12] a density function P(x, p) for quantum phase-space. With a few changes of
convention, this function is

1 :
Py(x,p) == [dse 72y (x +5)d(x—s). (18)

The Wigner phase-space density possesses the following properties

fP¢(x,p)dp=|tlf(X)|2, (19a)

JP.(x,p)dx =13 (D)2, (19b)

as expected of a phase-space distribution. Compare the intermediate state result

Izp(x,y)|2=27r3/2fdu A(x—u)/duA(y—v)%fdse_Z”" C(u+s)C*(u—s)

(20a)

=27T3/2fduA(x—u)deA(y——U)PC*(u,U). (20b)

Except for microscopic smearing factors and unimportant conventions, eqs. (18)
and (20) are identical if the coordinate y is exchanged for the momentum p. Thus,
the squared intermediate-state wave function does behave like a phase-space
density. More to the point, Wigner’s phase-space distribution is not positive-defi-
nite, and so fails an important requircment of a probability distribution. The
absolute square of a wave function is however positive-definite by construction.
These points are reformulated more precisely below, where the intermediate state
wavefunction is rewritten in terms of quantum lumps.

5. Can Landau be rescued?

As shown above, Landau’s construction is generally inconsistent with the
Ginzburg-Landau equations, which are very general and firmly founded. But we
should not discard Landau’s model prematurely. Let us therefore abstract two
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properties of Landau’s construction and see if general solutions to the linearized
Ginzburg-Landau equations can be found which satisfy these properties. Then in
sect. 6 we will see how the nonlinear terms in the Ginzburg-Landau equations
serve to refine the solution space. The properties we search for are:

(i) Space-filling solutions. The |y|* distribution fills the xy plane;

(i) Elongated structures. Since Landau’s construction is highly asymmetric we
ask if [x © y] symmetry is an expected feature in the solution space.

5.1. SPACE-FILLING DISTRIBUTIONS: THE ABRIKOSOV SOLUTIONS

Consider (following Abrikosov [5]) the solutions (x, y) defined by eq. (11) with

ck = ¥ C,,,0(k —nk,), (21a)

n=—wx
where k is a real parameter and C, ,, is periodic

C,,,=C

(n+p)/p*

(21b)

n/p

Thus the C, ,, can be specified by p independent complex parameters [15]. Then

U(x,9) = L G, perithormtonks2 (22)

obeys the relations
(/jp(xay+277/k0)=lllp(x’y) (233)
¥,(x +pky,y) = g ipkoy d(x,y). (23b)

Thus |y,(x, y)? is periodic [and ¥,(x,y) is quasi-periodic] on a rectangle of
dimension (Ax, Ay) = (pk,, 27 /k,). This property ensures us that the wave func-
tion is space-filling. [Thus, for example the analysis of sect. 4 needs to be modified
by replacing integrals like those in eq. (13) by spatial averages.] The functions
¥,(x,y) can also be written in terms of Jacobi theta functions, e.g.

zlll(x,y)=iCOe_"Z/2@3[ik0(x—iy),e_"g/Z]. (24)

Since |y, (x, yI?is a periodic function, it is useful to consider its Fourier trans-
form. Following Lasher [6] we write

U, (x, )2 =N, Lg,(k)e™ ", (25a)
k
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where

N, =1g,(x, y)I? (25b)

is the xy spatial average of |¢,(x, y)|* [thus g,(0) = 1]. The C, ,, are normalized by

1

p—
2 IC, 1P =1. (26)
n=0

Then it follows that

gp(k) — e—k2/4+ikxky/2 hp(Nx’ Ny) , (273)
p—1

h (N, N,) = Y exp(2minN,/p)Cé iny/pCo s (27b)
n=0

h,(0,0) =1, (27¢)

with the sum in eq. (25a) taken over values
k=[(27/pko) N, koN,] (28)

where (N,, N,) are integers ranging from negative to positive infinity.
It is also useful to define C the finite Fourier transform of C, ,

m/p? p
- 1 21
Cm - e2-n-imn/p Cn , 29
/p /D ngo /p ( )
whence
p—1 _
h,(M,N) = Y eZWi(M’"*N"’/I’hp(m,n), (30)
m,n=0
with
I _ 1 2mimn/p Sk 3
h,(m,n)y=—e Con,nClps (31)

VP m/e

which is periodic (with period p) in both m and n. By the Poisson sum rule,
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eq. (25a) can then be written

pr(xay)|2=‘/§Np Z i:lp(p_m’p_n)d)(x_kom’y_27Tn/k0p)a (323)

m,n=—w

d(x,y) =exp[—Hx2+y?) —iny]. (32b)

Thus |([Ip|2 is simply a superposition of the quantum lumps ¢, weighted by the
periodic function 4,. The counterparts of egs. (13) and (14) are

p—1
7 ~ 2
thp(m,n)=lcnl : (33a)
p—1
i 2
gﬂhp(m,n) =IC,| (33b)
and so
p—1 _
Z_th(m,n)=1. (34)
Also
p=l 1 »-1 1
Y olh(ma)P=—= ¥ lh(M,N)?*=—. (35)
m,n=0 P pm oN=0 p

From egs. (33) it is evident that / ,(m, n) behaves like the Wigner function P, of
eq. (18), with |C,, ,|*> and IC, /%> the complementary distributions in Fourier
conjugate coordinates. Here m corresponds to the x-direction of the lump wave-
function, while n corresponds to its y-direction. Clearly no “smearing factors”
A(s) are present in egs. (33). Thus, the quantum lump formation of the problem
yields a more precise definition of the way in which the x and y coordinates act
like Fourier conjugates.

5.2. ROTATIONAL SYMMETRY

By choosing wave functions #,(x,y) which obey eqs. (23), the square-plate
Landau boundary conditions have implicitly been introduced. Thus, these solutions
possess, at most, only a discrete [x <> y] rotational invariance. When does this
symmetry occur? From eqs. (28) and (31), it follows that ¢ (x, YI? is [x o]
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symmetric when

(i) ki=2m/p and (36a)
(ii) C,,,=€"Ck,, (36b)

with 6 an arbitrary real parameter.
Consider further the structure of eq. (36b). It can be written as

p—1
Y F,.C,,,=¢°Cx, ., (37a)
n=90
where
1 :
F,,=—e*mmn/p, (37b)
VP
The Fourier transform matrix F is symmetric and satisfies
F4=F*F=1. (38)

The eigenvectors D, , ,(N) of F can be taken real, and the corresponding eigenval-

ues A, = exp(iy,) are just the fourth roots of unity. Thus

C,,p=c®=w2D  (N) (39)

n/p
satisfies eq. (36b), and the problem of finding [ x <> y] symmetric functions |¢,(x, y)I*
reduces to finding the eigenvectors of F. Linear combinations of the solutions eq.

(39) with real coefficients also satisfy eq. (36b).
Some useful (unnormalized) eigenfunctions of F are tabulated below

exp(ix,) =1:D, ,,(1) =1+8,0/p , (40a)
exp(ixy) = —1:D, ,,(I1) = 1 —8,0/P - (40b)

It was pointed out by Lasher [6] that the order parameter ¢(PX(x,y) of a state
consisting of only vortices of quantum number p can be written [cf. eq. (24)]

x y

W x = I
l,[f ( ,Y) [lpl( p ’\/E

} : (41)
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The corresponding C,, ,, satisfy the recursion relation

p—1 —kg X
Cospi1y= mz_oexp{————zp(p D [(1+p)m —pn] }Cm/p. (42)

When k§ =2, the C,,, defined by eq. (42) are eigenfunctions D, ,,{1ID of F
with eigenvalue exp(i x,;) = 1. (This is obvious, since powers of an [x « y] symmet-
ric function are also symmetric.)

A fourth symmetric solution can be obtained from

© S2 n 2
A, o(8) = ) exp[—E(N—;)] (43a)
N=—x
V2 * 272 Mn
= Y exp|——M?-27i—|, (43b)
&) M= —x s p

where eq. (43b) follows from eq. (43a) by application of the Poisson sum rule. The

finite Fourier transform of A, ,(s) is
- 2mp 2wp
Ao =4, 2, (44
so that
D,,(1IV)=A4, ,,(V27p) (45)
is an eigenvector of F with eigenvalue exp(i y;,) = 1. More generally,
Vv2mp 2mp
D,,,= [ds Apypls) £ A,,/p(——s )}f(s) (46)

[with f(s) arbitrary] gives eigenvectors of F with eigenvalues e’ = +1, respec-
tively.

6. Constraining the wave function by including nonlinear effects

The above analysis concerned only the solution to the linearized Ginzburg-
Landau equations. This solution space can be refined by including nonlinear terms
in the analysis in a perturbative fashion. The most elegant way to do this is to
express the wave function ¢ and magnetic field H in a power series in a fictitious
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parameter ¢ [6]

H=H,+¢H +¢*H, + ..., (47a)
b =Ve (W +ep, +eX,+...) (47b)

and then evaluate the free energy. At the end of the calculation, the parameter ¢
is set to one, and the corrected free energy is then minimized. The following
derivation of eq. (56) is a recast version of the analysis of Abrikosov and others
[5-71.

If the Euler equation eq. (5a) is multiplied by ¢* and integrated over all space,
the result is

gD+ |y — |y* =0, (48)

where the bar (here and below) denotes an xy spatial average. Eq. (48) is
integrated by parts and inserted into the Ginzburg-Landau free energy to yield

F=f(x) —f,=3(<*H*+35-3lyl" )
=F,+eF, +e°F,+.... (49a)

At large |z| (outside the plate) the magnetic field approaches a uniform constant
value |H|— H,. Deep within the plate and away from the edges

A=¢,A(x,y), —H=¢ H(x,y). (50a,b)

Only the first two terms of eq. (47a) are needed to evaluate the first correction
to the free energy. Thus

Hy=H =1, (51a)
! 2_ 12
Hy = Hy = Ho = o (10l = 10l), (51b)

where ¢, is the lowest-order wave function (discussed in subsect. 5.1). The
incident magnetic flux per unit area, B, is given by

B

H=H_+¢(H,—H,), (52a)

H,=0, n>1, (52b)

n

where eq. (52b) is chosen by convention. If egs. (51) are substituted into eqgs. (49),
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the result is

Fy=%+3k*H?, (53a)

F,=«’H(H,-H,), (53b)

F,=3k’H? = 3o|* + «*H, H, (53¢)
12 2, | 2\ 18— (i 12)

— W (H = H) + | (=200~ (o) |- (530)

There is a constraint equation which can be derived by expanding eq. (48) in
powers of & (Abrikosov [5] gives a different derivation)

C_HA

1+ (22— 1B’ (54)

Wol? =
where
B =1l (iwol?) (55)

is explicitly independent of B and the normalization of . [Eq. (54) is just the
next-order correction to eq. (10)]. Then up to second order in & [5]

(B-1)°

F=lilepr_le2o 0
sk Y 2 - 1)B

(56)

where B is measured in units of H,.

The order &* term has been evaluated by Lasher [6] for certain special cases. He
found it to be proportional to (2«x* — 1), thus presumably becoming small in the
limit kK — 1/v2 where our interest lies (see also ref. [16]).

Recall that Abrikosov’s analysis concerned type II superconductors (where
k >1/v2). When « exceeds 1/V2 the free energy eq. (18) is minimized by making
B as small as possible (B,,;, ~ 1.16). This leads to the standard prediction [5] of a
triangular-lattice array of vortices for a type II superconductor. The present
analysis goes beyond Abrikosov to look at k < 1/v2, for which the minimum free
energy occurs when

B<1/(1-2k%). (57)

Note therefore that when « < 1/V2 (as occurs in e.g. lead), B can be quite large.
Also note that there is no real singularity in the free energy eq. (56) near this
value, for eq. (54) implies that then B must be near its critical value of unity in
order that there be a finite density of superconductor in the plate.
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(a) (b)

Fig. 2. Flux pattern generated by superconductor density |,(x, y)|?. Shaded areas indicate where
density exceeds 0.7 of its maximum: (a) kg = v27; (b) ko = 1.3y27 .

The simplest example to consider is ¢, (x, y) [cf. eq. (22)]. Then

g(ky)eg(2m/ky), (58a)

=]

Y exp(—1x2n?) (58b)

n=—ow

B

g(x)

[note that B,(k,)=B,27/ky)]. Away from its minimum value B,(v27)=1.18,
Bk, is well approximated by

. V2w kg
Bi( 0)~—k0 +‘/2—7T.

(59)

Recall [cf. eq. (23)] that |4 (x, VI s periodic on a rectangle (Ax,Ay)=
(ko,2m/ky). Thus only when k,=v2m can the (p=1) flux penetration pattern
be [x < y] symmetric. From eqgs. (57) and (59) it follows that & is typically much
greater or much less than V2 . Thus, the flux patterns will consist of elongated
structures. Since the solution with k, is degenerate with its [x <> y] version with
koo 2m/k,, a pattern of elongated domains is predicted.

The degree of elongation is much greater than might be expected on the basis of
this simple inference. In fig. 2 flux patterns produced by |y, (x, y)I> = p(x, y) are
presented. Specifically, the shaded areas are those where p takes at least 0.7 of its
maximum value. For k, = V27 ~ 2.507 (when B, = 1.180) we find fig. 2a, while for
ko=1.3vV2m ~3.259 (when B, = 1.326), fig. 2b is obtained. Note that even when
k, is slightly different from its symmetric value V27, significant elongation occurs.

This is not the whole story, however. In sect. 5 an infinite set of wave functions
¥,(x,y) was defined. The above analysis concerns only p =1, where the
Ginzburg-Landau free energy is minimized for elongated structures. What hap-
pens for higher values of p? It will now be shown that there are always [x < y]
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Fig. 3. Plot of B,(N)versus p for N =1, 11, 1II, and IV.

symmetric solutions for any B8 > 1.2, but these are degenerate with a far larger
number of elongated patterns. Thus, the expected pattern is highly asymmetric.
By using the notation and normalization of egs. (25)-(28), B, can be written

B,= Llg, (k). (60)

This sum has been evaluated at the symmetric point k% =2m/p for C, /p PTOpor-
tional to the eigenvectors {D, ,(N), N=LILIILIV} of eqgs. (40)-(45). The
corresponding functions B,(N) are displayed in fig. 3.

Recall that for a given p it is possible to interpolate continuously between any
two given values of B,(N) by taking linear combinations of the C, ,, (with real
coefficients). Note also that all of the B, are monotonically increasing functions of
p. [In particular, 8,(IV) = p/2]. Thus, there is an [x © y] symmetric flux distribu-
tion for any given value of 8 > 1.2. However, as pointed out in sect. 5, the property
of [x & y] symmetry is highly unusual, and thus a given pattern is overwhelmingly
likely to exhibit elongated flux distributions.

7. Fractal patterns

It is worth pointing out that far stranger flux patterns than the periodic
Abrikosov patterns discussed above can occur. For instance, consider the continu-
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ous but nowhere differentiable function of Weierstrass [13] with fractal dimension
D

W(t)= Ty~ cos(y"), (61)
n=0

which possesses the scaling property (1 <D <2)
W(yt) =vy>~PW(t) + cost. (62)

If we use C(k) ~ W(k/L) in eq. (11), the result will be flux distributions which are
fractal in x at scales smaller than L and consist of lumps with exponentially
increasing spacing in the y-direction. The value of B for this distribution will
diverge however unless |¢| is made space-filling.

8. Conclusions

It is clear that the superconducting intermediate state provides a fascinating
laboratory for the study of unusual quantum phenomena. Unfortunately, the
present analysis is severely curtailed by the limitations of perturbation theory.
Recent progress in simulations of lattice Higgs models [8] suggest, however, that
significant theoretical progress could soon be made in this area. (Indeed, the
present work was inspired by one such simulation [9].)

Several interesting results were, however, gleaned from a perturbative analysis
of the Ginzburg-Landau equations when the incident magnetic field is near its
critical value. For the geometry of fig. 1, the critical superconducting wave function
behaves much as if the x- and y-directions were Fourier conjugate coordinates,
like position and momentum in a one-dimensional quantum mechanics problem.

It is this Fourier conjugation property of the critical wavefunction which causes
the breakdown of Landau’s textbook model of the intermediate state. Landau
predicted [1] a field-penetration pattern which was periodic in one plane coordi-
nate and independent of the other. Yet if a wavefunction is independent of a
coordinate, its Fourier conjugate is sharply localized, not periodic.

Nevertheless, Landau’s physical intuition was essentially correct. As shown
above, the Ginzburg—Landau equations yield an infinite number of solutions for
the flux pattern which are degenerate in free energy. The majority of the degener-
ate solutions are highly elongated, and so thus are the expected flux patterns. It is
symmetry breaking by indifference—the free energy of the many elongated states
equals that of the few symmetric ones, so the indifferent system usually chooses an
elongated ground state.

Experimentally or in a lattice Higgs simulation this analysis suggests that in
superconductors with k <1/v2 (like lead, not like aluminium) there will be a
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complicated and essentially unpredictable ensemble of domains containing elon-
gated structures. These domains can be aligned by careful sample preparation, or
by applying the magnetic field in a slightly oblique direction (in which case the
patterns will, by the Meissner effect, align themselves parallel to the component of
the magnetic field tangential to the plate). This analysis also suggests that the
domains of elongated patterns meet at right angles, though this effect might
depend on sample geometry.

Several interesting problems were not covered by this analysis. For simplicity,
only Landau’s original square plate geometry was considered, although other
configurations are likely feasible. The present analysis was also concerned with
only plates much thicker than the coherence length. The problem of a thin plate
was addressed by Tinkham [14], Lasher [6] and others [7], who predicted that a thin
enough plate gives rise to a flux pattern which is a triangular vortex array, much
like a type 1I superconductor.

Most interestingly, questions as to the dynamics of this system (and its behavior
when voltages or currents are applied) were left unanswered. It is suggestive to
consider this system as a giant array of Josephson junctions with dynamic bound-
aries, which may have applications as diverse as a dark-matter detector for particle
physics. (I am indebted to Roberto Petronzio for a discussion on this latter point).

It is a pleasure to thank Leo Stodolsky, Roberto Petronzio, and Massimo
Bernaschi for many useful discussions. I also thank the Department of Energy for
furnishing supercomputer time essential at various stages of this work.
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