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If a large squareplate of a type I superconductoris placed in a perpendicularmagnetic
field, the field will penetrateit in a patternof domains.The intermediate-stateproblemis to
predict this pattern. In the critical Ginzburg—Landautheory, the horizontal and vertical
directions of the plate are essentiallyFourier conjugatecoordinates,like position and momen-
tum in quantum mechanics.Thus, the intermediatestate allows us a rare direct glimpse of
quantumphasespace.It is also demonstratedthat, although Landau’s(1937) textbook model is
inconsistentwith the Ginzburg—Landauequations,its qualitative natureis correct. Elongated
structuresconsistentwith a completespontaneousbreakdownof discreterotational invariance
are predicted.Commentswith regardto lattice Higgs simulationsare alsomade.

1. Prolegomena

The problem of the magnetic intermediatestate in superconductorsis both
extremelyfascinatingandextraordinarilydifficult. Its solution involvesthe analysis
of highly degenerateground statesand intricate fractal-like patternson many
length scales(cf. sect. 7) andutilizesarcanemathematicalstructuresthat aremost
familiar perhapsto the string theorist.Yet, for all the complexity of its solution,
the problem itself can be statedwith deceptiveease:Considera block of type I
superconductingmaterial placed in a weak magnetic field. Because of the
Meissnereffectthe magneticfield is expelled.As the field strengthis increasedthe
magnetic field penetratesthe superconductor.The problem is to predict this
patternof penetration.

2. Background and synopsis

The simplest illustration of the magnetic intermediate state is a problem
originally addressedby Landau[1] and consideredin detail here.Landau’sprob-
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~,HA

Fig. 1. Geometryof problem.Magnetic field is incidentin 2 direction, and is a constant HI = HA at
largez.

lem involved a large squareplateof a (type I) superconductorin a perpendicular
magneticfield. Landaupredictedthat the magneticfield would penetratethe plate
in a periodicseriesof stripes.Following fig. 1, we take the plate to lie in the xy
plane. Thenthe patternpredictedby Landauis independentof y andperiodic in

x (or vice-versa),consistentwith a completespontaneousbreakingof the discrete
[x ~-‘ y] rotational symmetryof the system.

Subsequentexperimentalwork [21revealedthat the true situationwasfar more
baroque,involving complexpatternson many length scales.Usually, thesepatterns
includeelongatedstructures,indicating that Landau’spicture might be a qualita-
tive guide to the natureof the intermediatestate.Indeed,if the magneticfield is
applied at a slightly oblique angle, the domain patternsfound [3] do in fact
resembleLandau’smodel.

Beforewe are too critical of this earlyattemptof Landau,it is well to remember
that, at the time (1937)of his analysis,superconductivitywasevenlesswell-under-
stood than it is today. Most significantly, his analysis predatedthe Ginzburg—
Landau equations(1950) [4] and thus Abrikosov’s germinal work [51which first
distinguishedbetweentype I andtype II superconductors.Landau’smodelwas au
fond an exercisein classicalelectromagnetism,augmentedwith phenomenological
boundaryconditionsobtainedvia the Meissnereffect.

By contrast, the analysis presentedhere is basedupon the Ginzburg—Landau
equations,following and extendingthe classicworks of Abrikosov [5] andothers
[6,71.It proceedsby expandingtheseequationsin aperturbationseriesaboutthe
critical magneticfield abovewhich the superconductingwave functionvanishes.A
more completeanalysis of the problem probably requiresnumericaltechniques,
suchas thosepresentlyappliedto latticeHiggsmodels[8]. (In anticipationof such
calculations[91,someremarkspertinentto lattice simulationsare includedbelow.)
Nevertheless,evenwithin this insularperturbativedomainstartling resultscanbe
obtained.At scaleslargerthan the coherencelength,the superconductorbehaves
asif the x- and y-directionswereFourier conjugatecoordinates,like position and
momentumin a one-dimensionalquantummechanicalproblem(cf. fig. 1). Thus,
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the discrete[x ~-sy] rotation symmetry is unlikely, for only rarely does a wave
function equal its Fourier transform. Indeed, the perturbativesolutions to the
Ginzburg—Landauequationsare generallyelongatedshapes,in qualitative agree-
ment with Landau’sconstruction.From the Fourier conjugation property men-
tioned abovethe quantitative fallacy of Landau’smodel can also be seen. If the
flux patternsare independentof, say, the y-coordinate,then the superconducting
wave function mustbe an (unlocalized)planewave in the y-direction. The Fourier
transformof a planewave is a deltafunction, so the wave function will be sharply
localized in the x-coordinate,and not the periodicfunction envisagedby Landau.

3. Landau’s problem revisited

Following GinzburgandLandau[4],we assumethat the free energydensityf(x)
of the systemcanbe expandedas

f(x) =f~+aI~(x)I2+~P~(x)I4+ ~~3- ~A)~(x)~+ ~ (1)

wheref~is the free energyof the normal material, ~x) is the order parameter
(i.e., the superconductingwave function), H is the magneticfield, andthe restare
phenomenologicalparameters.(It shouldbe pointedout that this formalism is very
general[10] and can be derived[11] from the BCS theory.)This equationcan be
rescaledto as to measure

a 1/2

~(x) in units of ~~j= (-~--) , (2a)

h
x in units of~= , (2b)

V— 2ma

f(x) —f~in units of —2ak/i,j2, (2c)

A(x) in units of cI~/2~r~, (2d)

where cT~= 2irh/e* is the elementary flux quantum, and ~ is the coherence
length.Also, we define

m*c2
4i~i,~j2e~2’ (3a)

(3b)



630 D.J.E. Callaway / Superconductingintermediatestate

whence

f(x) -f~=~D~2+ ~i(x)I2_ 1)2+ ~K2H2, (4)

whereD = 8 — L4 is the covariantderivative.The correspondingEuler equationsof
motion are

D2~I+~f_I1frI2
4!,=0, (5a)

— K
2[32A — 8(3 .A)] = Im[~fj*D~,]. (5b)

Note the appearanceof the Abrikosov parameterK. The valueof K determines[51
whether the superconductoris type I (K < 1/~/2)or type II (K> 1/v’2). Here the
primary concernis type I superconductors,for which the superconducting/normal
domainwall energyparameteris positive.Thusthe domainsurfaceareais typically
minimized in equilibrium configurations.

Consider(see fig. 1) Landau’sproblem of a large flat squareplate of type I
superconductorin the .xy planewith a constantmagnetic field incident in the
2-direction. Deepinside the plateand away from the edgesthe magneticfield H
has only a 2 component.If the thicknessof the plate is much greaterthan the
coherencelength ~ (which rangesfrom 500 to 10000Angstromsfor typical pure
superconductors)then inside the plate H will be essentiallyindependentof z.
Thus

H=H(x,y)ê~. (6)

The symmetryof the problemthen permits the choice

A=A(x,y)ê~. (7)

The Ginzburg—Landauequations(5) are to be solved in a perturbativeexpan-

sion aroundthe critical region where IH~ H~(which equalsone in the present
units). In this regime the order parameter~(‘(x) is small, so eqs. (5) can be
linearized

(D~+ 1)~i(x)= 0, (8a)

where

Do~3+iHAxêY, (8b)

and HA is a constantequalto the magnitudeof the applied magneticfield.
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Eqs.(8) are easilysolvedby separatingvariables,i.e.

~i(x) =e”~’r(x), (9a)

{a~+[1-H~(x-k/HA)2I}r(x)=o. (9b)

Note that eq. (9b) is essentiallythe Schrodingerequation for one-dimensional
harmonic oscillator, with an important difference—the“energy” E equalsone!
Away from the A~edgesof a large plate,the appropriatesolutionsfor ~‘(x) are the
familiar normalizableeigenfunctions,whence

(2n+1)HA=1, (10)

and thus HA ~ H~= 1. The seemingquantization of HA is an artifact of the
linearized analysis [see eq. (54) et seq.]. Thus, it is necessaryto include the
nonlinearterms(at leastperturbatively)when HA is less than H~.

The appropriatesolution to the linearized Ginzburg—Landauequation for
HA = H~= 1 is thus

~(x,y)=fdkexp[-iky-~(x-k)2]C(k), (11)

where the function C(k) is arbitrary in this limit. Recall that Landau’s model
predictsthat hfi(x, y)12 is independentof y and periodicin x (or vice-versa).But
this would meanthat

C(k) ‘~(k—k
0), (12a)

so that

I~(x,y)1
2 eko)2, (12b)

which is clearly not periodicin x. Thus, in the strictest senseLandau’sconstruc-
tion is (oddly enough) inconsistentwith the Ginzburg—Landauequations.This
inconsistencypersistsin the full nonlinearcase.

The presentanalysisproceedsas follows. First, variousinterestingpropertiesof
the wave functions eq. (11) are adumbrated.Following this generaldiscussionit
will be shown how the nonlinearterms in the Ginzburg—Landautheory serve to
constrainthe function C(k) in eq. (11). Severalobservationsabout the allowed
solution spacewill thenbe made.
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4. The remarkable structure of the wave function: A glimpseof quantum
phase space

One ratherstriking propertyof the wave function in the critical regionfollows

directly from eq.(11). We constructp1(x), the densityin x of the order parameter

p1(x) fI~(x, y)1
2 dy, (13a)

=2~TfdkpC(k)j2e~~~2 (13b)

27r3/2f dkIC(k)~2L1(x— k).

Similarly,

~2(~)~fI~i(x,y)I
2dx, (14a)

=2irfdq~C(q)I2e~~2 (14b)

2ir3/2fdqIC(q)PLI(y —q),

where

~ (15)

is just the Fourier transformof C(k), and

1 2

(16)

is a sharplylocalizedsmearingfunctionwith unit volume.
Recall that distanceshere aremeasuredin units of the coherencelength,which

is microscopicallysmall. At macroscopicdistances4(s)—~5(s), and

p
1(x) ~2~3//2IC(x)~

2, (17a)

p
2(y) ~2~3//2~C(y)~

2. (17b)

From eqs.(17) it is seenthat at macroscopicscales,x and y canbe thoughtof as
(Fourier) conjugatecoordinates,much like position and momentum in a one-
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dimensionalquantum-mechanicalproblem.The function C(x)plays therole of the
position-spacewavefunctionin this quantumanalogy,just as C(y) correspondsto
its momentum-spacecounterpart.Thus at macroscopicscalesthe intermediate
stateof a critical superconductorallows usa glimpseof a quantum“phasespace”.

This point is worthy of elaboration.Overa half-centuryago Wigner proposed
[12] a densityfunction P(x,p) for quantumphase-space.With a few changesof

convention,this function is

P~(x,p)=ifdse2~P5~JJ*(x+s)qJ(x_s). (18)

The Wignerphase-spacedensitypossessesthe following properties

fP4(x,p)dp=I~(x)I2, (19a)

fP~(x,p)dx=I~(p)I2, (19b)

as expectedof a phase-spacedistribution. Comparethe intermediatestateresult

~(x, y)~
2= 2~3/2f du 4(x — u)fdv4(y — v)_f dse21~C(u + s)C*(u — s)

(20a)

=2~3/2fdu4(x_u)Jdv4(y_v)Pc*(u,v). (20b)

Except for microscopicsmearingfactors and unimportantconventions,eqs.(18)
and(20) areidentical if thecoordinatey is exchangedfor the momentump. Thus,
the squared intermediate-statewave function does behave like a phase-space
density. More to the point, Wigner’s phase-spacedistribution is not positive-defi-
nite, and so fails an important requirementof a probability distribution. The
absolutesquareof a wave function is however positive-definite by construction.

Thesepoints are reformulatedmorepreciselybelow,wherethe intermediatestate
wavefunctionis rewritten in termsof quantumlumps.

5. Can Landau be rescued?

As shown above, Landau’s construction is generally inconsistentwith the

Ginzburg—Landauequations,which arevery generaland firmly founded. But we
should not discard Landau’smodel prematurely.Let us therefore abstract two
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propertiesof Landau’sconstructionand seeif generalsolutions to the linearized
Ginzburg—Landauequationscanbe found which satisfy theseproperties.Thenin
sect. 6 we will see how the nonlinearterms in the Ginzburg—Landauequations
serve to refine the solution space.The propertieswe searchfor are:

(i) Space-fillingsolutions.The ~2 distribution fills the xy plane;
(ii) Elongatedstructures.Since Landau’sconstructionis highly asymmetricwe

ask if [x 4-* y] symmetryis an expectedfeaturein the solution space.

5.1. SPACE-FILLING DISTRIBUTIONS: THE ABRIKOSOV SOLUTIONS

Consider(following Abrikosov [5]) the solutionsi/i(x, y) definedby eq.(11) with

C(k) = ECfl/P~(k — nk0), (21a)

where k0 is a realparameterand C~/~is periodic

Cn/p = C(n+p)/p. (21b)

Thus the Cn/p can be specifiedby p independentcomplexparameters[15]. Then

~ y) = ECn/p eoko)
2/2 (22)

obeysthe relations

i/i~(x,y+2ir/k
0) =~/i~(x,y) (23a)

ç&~(x+pk0, y) = e_1~~oY~i~(x, y). (23b)

Thus ~i~(x,y)~
2is periodic [and ~/i~(x,y) is quasi-periodic] on a rectangleof

dimension(4x, 4y) = (pk
0,2ir/k0). This propertyensuresusthat thewave func-

tion is space-filling.[Thus, for examplethe analysisof sect.4 needsto bemodified
by replacing integrals like those in eq. (13) by spatial averages.]The functions
iIi~(x,y) canalso be written in termsof Jacobithetafunctions,e.g.

~i1(x,y) =iCoe~
2~’2�

3[iko(x_iy),e~’2]. (24)

Since I~Ii~(x,y)1
2 is a periodic function, it is useful to considerits Fourier trans-

form. Following Lasher[6] we write

(25a)
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where

~ (25b)

is the xy spatialaverageof k(i~(x,y)~2[thus g~(0)= 1]. The Ca/p arenormalizedby

p—1

~ Cfl~2=1. (26)
n=O

Thenit follows that

g~(k)= e 2/4±ik~k~/2h~(N~,Np), (27a)

p—i

h~(N~,N~)= ~ exp(2’n-inN~/p)C~+N)/~Cfl/~, (27b)
n=O

h~(0,0)1, (27c)

with the sumin eq.(25a) takenovervalues

k= [(2~-/pk
0)N~,k0~~], (28)

where(Ni, N~)are integersrangingfrom negativeto positive infinity.
It is also useful to define Cm/p, the finite Fourier transformof Ca/p

1 P—

1
Cm/p~~ ~ ~ (29)

VP ~

whence

P—I

h~(MN) = E ~ (30)
m,n=O

with

~ n) = e2~1mn/PCm/pCfl/P, (31)

which is periodic (with period p) in both m and n. By the Poissonsum rule,
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eq.(25a) canthen bewritten

I~’~(x,y)I2=%/~I\1~~,~ i~(p—m,p—n)4(x—k
0m,y—2~-n/k0p), (32a)

m, n = —

(x,y)~exp[_~(x2+y2)_ixy]. (32b)

Thus I~I2 is simply a superpositionof the quantumlumps çb, weightedby the
periodicfunction h~.The counterpartsof eqs. (13) and(14) are

p—i
~ h~(m,n)=~C~j, (33a)

m =0

P—

1

Ei-~(m,n)=~CmI2 (33b)

and so

P—i

~ i~(m,n)=1. (34)
m,n=0

Also

P—i 1 p—i 1
E j;~(m,n)~2= —~ ~ h~(M,N)I2=—. (35)

m,n=0 M,N=0 P

From eqs.(33) it is evidentthat h~(m,n) behaveslike the Wignerfunction P~of
eq. (18), with Cm/p~2and Cfl/P12, the complementarydistributions in Fourier
conjugatecoordinates.Here m correspondsto the x-direction of the lump wave-
function, while n correspondsto its y-direction. Clearly no “smearing factors”
4(s) are presentin eqs.(33). Thus, the quantumlump formation of the problem
yields a moreprecise definition of the way in which the x and y coordinatesact
like Fourier conjugates.

5.2. ROTATIONAL SYMMETRY

By choosing wave functions ~i~(x,y) which obey eqs. (23), the square-plate
Landauboundaryconditionshaveimplicitly beenintroduced.Thus,thesesolutions

possess,at most, only a discrete [x 4-~y]rotational invariance. When does this
symmetry occur? From eqs. (28) and (31), it follows that ç1t~(x,y)12 is [x ‘-~y]
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symmetricwhen

(i) k~=2ir/p and (36a)

(ii) ifl/~=e’°C,~’/~, (36b)

with U an arbitrary realparameter.

Considerfurther the structureof eq. (36b). It canbe written as

p—i

~ FmnCn/P=e’°C,~/p, (37a)
n=0

where

F =__e
2~1m~~/P. (37b)mn VP

The Fourier transformmatrix F is symmetricandsatisfies

F4=F~F=1. (38)

The eigenvectors Dfl/~(N)of F can be taken real, and the corresponding eigenval-
ues AN = exp(iXN) are just the fourth roots of unity. Thus

Cn/p = e1~~N)/’2Dfl/~(N) (39)

satisfieseq.(36b),andthe problemof finding [x ~-*y]symmetricfunctions ~/i~(x,v)12
reducesto finding the eigenvectorsof F. Linear combinationsof the solutionseq.
(39) with real coefficientsalso satisfy eq. (36b).

Someuseful (unnormalized)eigenfunctionsof F are tabulatedbelow

exp(ix
1) = 1:Dfl/~(I)= 1 ~n0\~’ (40a)

exp(ix11) = —1: Dfl/~(II) = 1 — ~n0V~~ (40b)

It was pointed out by Lasher [6] that the order parameter ~j/’~(x, y) of a state
consisting of only vortices of quantum number p can be written [cf. eq. (24)]

P

ç1i~~(x,y)= [~ii(-.ç;~-~~ ~ . (41)



638 D.J.E. Cal/away / Superconductingintermediatestate

The correspondingCa/p satisfy the recursionrelation

Cn/(~+l)= P~iexp{ 1) [(1 +p)m Pn]2}c/ (42)

When k~= 2~r,the C~/~defined by eq. (42) are eigenfunctionsDfl/~(III) of F
with eigenvalueexp(ix111)= 1. (This is obvious,sincepowersof an [x ~-sy] symmet-

ric function are also symmetric.)
A fourth symmetricsolutioncan be obtainedfrom

Afl/P(s)~~exP[_~(N_~)] (43a)

2~2 Mn
exp —---—~--M

2—2~i———, (43b)
S M=—oc S p

whereeq.(43b)follows from eq. (43a)by applicationof the Poissonsumrule. The
finite Fourier transformof A~/~(s)is

- 2’n-p
A~/~(s) = ______ — , (44)

so that

Dfl/~(IV)=Afl/~(~/~~J) (45)

is an eigenvectorof F with eigenvalueexp(iXiv) = 1. More generally,

Dfl/P=Jds[Afl/P(s) ±~Afl/P(~)]f(s) (46)

[with f(s) arbitrary] gives eigenvectors of F with eigenvaluese’~= ±1, respec-
tively.

6. Constraining the wave function by including nonlinear effects

The above analysisconcernedonly the solution to the linearizedGinzburg—
Landauequations.This solution spacecanbe refinedby including nonlinearterms
in the analysisin a perturbativefashion. The most elegantway to do this is to
expressthe wavefunction ~J’andmagneticfield H in a powerseriesin a fictitious
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parametere [6]

H=H
0+rH1+r

2H
2+..., (47a)

(47b)

andthen evaluatethe free energy.At the end of the calculation,the parametere
is set to one, and the corrected free energy is then minimized. The following
derivation of eq. (56) is a recastversion of the analysisof Abrikosov and others
[5—7].

If the Euler equationeq.(5a) is multiplied by ~/i’~ andintegratedover all space,
the resultis

(48)

where the bar (here and below) denotesan xy spatial average. Eq. (48) is
integratedby parts andinsertedinto the Ginzburg—Landaufree energyto yield

F=f(x) ~ )
(49a)

At large zI (outside the plate) the magneticfield approachesa uniform constant
value HI —~ HA. Deep within the plate and away from the edges

A=ê~A(x,y), —H=ê2H(x,y). (50a,b)

Only the first two terms of eq.(47a) areneededto evaluatethe first correction
to the free energy.Thus

Ho=HC= I, (51a)

(Sib)

where ~,1i0is the lowest-orderwave function (discussedin subsect.5.1). The
incident magnetic flux per unit area, B, is given by

B=H=HC+s(HA—HC), (52a)

~ n>1, (52b)

whereeq.(52b) is chosenby convention.If eqs.(51) aresubstitutedinto eqs.(49),
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the resultis

F0 = ~ + ~K
2H~, (53a)

F
1 =K

2HC(HA—HC), (53b)

F
2 = ~K

2H~ — 3-I~’~I~+ K2H
0H2 (53c)

= ~K
2(HA -H~)2+ ~-

5[(i - 2K2)~4_ (~J5)
2J (53d)

There is a constraint equationwhich can be derivedby expandingeq. (48) in
powersof s (Abrikosov [5] gives a different derivation)

H-H
2 C A 54

~° 1+(2K2—1)/3’

where

()

is explicitly independentof B and the normalization of ~ [Eq. (54) is just the
next-order correction to eq. (10)]. Then up to second order in r [5]

1B 1\2
F=~+-~K2B2—1K2 ‘ (56)

4 2 2 1+(2K2—1)/3

where B is measuredin units of H~.
The ordere~term hasbeenevaluatedby Lasher[6] for certainspecialcases.He

found it to be proportional to (2K2 — i), thus presumablybecoming small in the
limit K —~ 1/ V~whereour interestlies (seealso ref. [16]).

Recall that Abrikosov’s analysis concernedtype II superconductors(where

K> 1/ ~). When K exceedsi/ ~ the free energy eq.(18) is minimizedby making
/3 as small as possible(/~mjn 1.16). This leadsto the standardprediction [5] of a
triangular-lattice array of vortices for a type II superconductor.The present

analysis goesbeyondAbrikosov to look at K < 1/ v~,for which the minimumfree
energyoccurswhen

/3~1/(1—2rt2). (57)

Note thereforethat when K ~ 1/ ~ (asoccurs in e.g. lead), /3 canbe quite large.
Also note that thereis no real singularity in the free energyeq. (56) near this
value, for eq.(54) implies that then B must be near its critical value of unity in
order that therebe a finite densityof superconductorin the plate.
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(a)

Fig. 2. Flux pattern generatedby superconductordensity ~i/x, y)1
2. Shadedareasindicate where

densityexceeds0.7 of its maximum:(a)k
0 = ~ (b) k0 =

The simplestexampleto consideris ~ (x, y) [cf. eq. (22)]. Then

/31 =g(k0)g(2ir/k0), (58a)

g(x) Eexp(_~x2n2) (58b)

[note that /31(k0)= /31(2ir/k0)]. Away from its minimum value /3I~J~) 1.18,

f31(k0) is well approximated by

/31(k0) + —~==. (59)
k0 V

21T

Recall [cf. eq. (23)] that I~i
1(x, y)1

2 is periodic on a rectangle (4x, 4y) =

(k
0, 2ir/k0). Thus only when k0 = can the (p = 1) flux penetrationpattern

be [x 4-* y] symmetric.From eqs. (57) and (59) it follows that k0 is typically much
greateror much less than ~ Thus, the flux patternswill consistof elongated
structures.Since the solutionwith k0 is degenerate with its [x ~ y] version with
k0 ~-* 2Tr/k0, a patternof elongateddomainsis predicted.

Thedegreeof elongationis much greaterthanmight be expectedon thebasisof
this simple inference.In fig. 2 flux patternsproducedby Ii~,1(x,y)I~ p(x,y) are
presented.Specifically, the shadedareasare thosewhere p takesat least 0.7 of its
maximum value. For k0 = ‘~ 2.507(when /3~= 1.180)we find fig. 2a,while for
k0 = ~ ‘~ 3.259(when ~ = 1.326), fig. 2b is obtained.Note that evenwhen

k0 is slightly different from its symmetricvalue ~ significant elongationoccurs.
This is not the whole story, however. In sect. 5 an infinite set of wave functions

~ y) was defined. The above analysis concerns only p = 1, where the

Ginzburg—Landaufree energy is minimized for elongatedstructures.What hap-
pensfor highervaluesof p? It will now be shown that thereare always [x .-‘ y]
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Fig. 3. Plotof /3~(N)versusp for N= I, II, III, and IV.

symmetric solutions for any /3 � 1.2, but theseare degeneratewith a far larger
numberof elongatedpatterns.Thus, the expectedpatternis highly asymmetric.

By usingthe notationandnormalizationof eqs.(25)—(28), /3~canbewritten

f3~=~Ig~(k)I2. (60)

This sum hasbeenevaluatedat the symmetric point k~= 2w/p for C~/~propor-
tional to the eigenvectors(Dfl/~(N), N = I, II, III, IV) of eqs. (40)—(45). The
correspondingfunctions f3~(N)are displayedin fig. 3.

Recall that for a given p it is possible to interpolatecontinuouslybetweenany
two given values of f3~(N)by taking linear combinationsof the Ca/p (with real
coefficients).Note also that all of the aremonotonicallyincreasingfunctionsof
p. [In particular, /3~(IV) p/2]. Thus, thereis an [x ~-‘ y] symmetricflux distribu-
tion for anygivenvalueof /3 ~ 1.2. However, aspointedout in sect.5, the property
of [x ~-‘ y] symmetryis highly unusual,and thusa given patternis overwhelmingly
likely to exhibitelongatedflux distributions.

7. Fractal patterns

It is worth pointing out that far stranger flux patterns than the periodic
Abrikosov patterns discussed above can occur. For instance, consider the continu-
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ousbut nowheredifferentiablefunction of Weierstrass[13]with fractal dimension
D

W(t) = ~ ~ (61)
n=0

which possessesthe scalingproperty(1 <D <2)

W(yt) =y2_Dw(t) +cost. (62)

If we useC(k) W(k/L) in eq.(11), the resultwill beflux distributionswhichare
fractal in x at scalessmaller than L and consist of lumps with exponentially
increasingspacing in the y-direction. The value of /3 for this distribution will
divergehoweverunless I~/I2is madespace-filling.

8. Conclusions

It is clear that the superconducting intermediate state provides a fascinating
laboratory for the study of unusual quantum phenomena.Unfortunately, the
present analysis is severely curtailed by the limitations of perturbation theory.
Recent progress in simulations of lattice Higgs models [8] suggest, however, that
significant theoretical progress could soon be made in this area. (Indeed, the
present work was inspired by one such simulation [9].)

Several interesting results were, however, gleaned from a perturbative analysis
of the Ginzburg—Landau equations when the incident magnetic field is near its
critical value. For the geometry of fig. 1, the critical superconducting wave function

behaves much as if the x- and y-directions were Fourier conjugate coordinates,
like position and momentum in a one-dimensionalquantummechanicsproblem.

It is this Fourier conjugationpropertyof the critical wavefunctionwhich causes
the breakdownof Landau’s textbook model of the intermediatestate. Landau
predicted[1] a field-penetrationpatternwhich was periodicin one planecoordi-
nate and independentof the other. Yet if a wavefunction is independentof a
coordinate,its Fourier conjugateis sharplylocalized,not periodic.

Nevertheless,Landau’s physical intuition was essentially correct. As shown
above,the Ginzburg—Landauequationsyield an infinite numberof solutions for
the flux patternwhich aredegeneratein free energy.The majority of the degener-
ate solutionsarehighly elongated,andso thusare the expectedflux patterns.It is
symmetrybreakingby indifference—thefree energyof the many elongatedstates
equalsthat of the few symmetricones,so the indifferent systemusuallychoosesan
elongatedgroundstate.

Experimentallyor in a lattice Higgs simulation this analysis suggeststhat in

superconductorswith K ~ 1/ v~ (like lead, not like aluminium) there will be a
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complicatedand essentiallyunpredictableensembleof domainscontainingelon-
gatedstructures.Thesedomainscan be alignedby carefulsamplepreparation,or
by applying the magnetic field in a slightly oblique direction (in which casethe

patternswill, by the Meissnereffect, align themselvesparallelto the componentof
the magneticfield tangential to the plate). This analysis also suggeststhat the
domains of elongatedpatternsmeet at right angles, though this effect might

dependon samplegeometry.
Severalinterestingproblemswere not coveredby this analysis.For simplicity,

only Landau’s original square plate geometrywas considered,although other
configurationsare likely feasible.The presentanalysiswas also concernedwith
only platesmuch thicker than the coherencelength. The problem of a thin plate
wasaddressedby Tinkham[14], Lasher[6] andothers[7], who predictedthat a thin
enoughplate gives rise to a flux patternwhich is a triangularvortex array,much
like a type II superconductor.

Most interestingly, questions as to the dynamics of this system (and its behavior
whenvoltages or currentsare applied)were left unanswered.It is suggestiveto
considerthis systemas a giant arrayof Josephsonjunctionswith dynamicbound-
aries,which mayhaveapplicationsas diverseas a dark-matterdetectorfor particle
physics.(I am indebtedto RobertoPetronziofor a discussionon this latter point).

It is a pleasure to thank Leo Stodolsky, Roberto Petronzio, and Massimo

Bernaschifor many useful discussions.I also thank the Departmentof Energyfor
furnishing supercomputertime essentialat various stagesof this work.

References

[1] L.D. Landau,Phys.Z. Soy. 11(1937)129[JETP 7(1937)371]; J. Phys.USSR7 (1943)99[JETP 13
(1943)377]; in Collectedpapersof L.D. Landau,ed. D. terHaar (GordonandBreach,NewYork,
1967);
L.D. Landau and E.M. Lifshitz, Electrodynamicsof continuous media (Pergamon,New York,
1984)sect. 57

[2] J.D. Livingston and W. Dc Sorbo,in Superconductivity,Vol. 2, ed. RD. Parks,(Marcel Dekker,
New York, 1969);
R.P. Huebener,Magnetic nux structuresin superconductors(Springer, New York, 1979);
RN. Gorenand M. Tinkham,J. Low Temp. Phys.5 (1971)465;
K.P. Selig andR.P. Huebener,J. Low Temp.Phys.43 (1981)37;
W. Buck,K-P. Selig and J. Parisi, J. Low Temp. Phys. 45 (1981) 21

[3] Yu.V. Sharvin, Zh. Eksp. Teor. Fiz. 33 (1957) 1341 [JETP 6 (1958) 1031];
D.E. Farrell, R.P. HuebenerandR.T. Kampwirth, J. Low Temp. Phys. 19 (1975) 99

[4] V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20 (1950) 1064
[5] A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32 (1957) 1442 IJETP 5 (1957) 11741;

W.H. Kleiner, L.M. Roth andS.H. Autler, Phys.Rev. 133 (1964)A122;
A.A. Abrikosov, DokI. Acad. Nauk SSSR86 (1952)489

[6] G. Lasher,Phys.Rev. 154 (1967) 345; 140 (1965)A523



D.J.E. Ca/laway / Superconductingintermediatestate 645

[7] K. Maki, Ann. Phys. (N.Y.) 34 (1965)363;
J. Pearl,Appl. Phys.Lett. 5 (1964) 65;
AL. Fetterand P.C. Hohenberg,Phys.Rev. 159 (1967)330;
R.P. Huebener,Phys.Rep.C13 (1974) 143;
A. Kiendl, J. Low Temp.Phys.38 (1980)277;
D.J.E.Callaway,RockefellerUniversitypreprint, RU89/B1/47,to appearin NucI. Phys.B (Proc.
Suppl.)

[8] PH. DamgaardandU.M. Heller, Phys.Rev. Lett. 60 (1988) 1246;
DiE. Callaway and Li. Carson,Phys.Rev. D25 (1982)531;
D.J.E.Callaway and R. Petronzio,Mud. Phys.B240 [FS18](1987)481

[9] M. Bernaschi,R. Petronzioand L. Stodolsky,unpublished
[10] S. Weinberg,Prog. Theor. Phys.Suppi. 86 (1986)43
[11] L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 36 (1959)1918 [Soy.Phys.JETP9 (1959) 1364]
[12] E. Wigner, Phys.Rev. 40 (1932)749
[13] K. Weierstrass,MathematischeWerke (Mayerand Muller, Berlin, 1895);

B.B. Mandelbrot, Les objects fractals (Flammarion,Paris, 1975); Fractals: Form, chance, and
dimension (Freeman,San Francisco, 1977); The fractal geometry of nature (Freeman, San
Francisco,1982);
MV. Berry and Z.V. Lewis, Proc. R. Soc. LondonA370 (1980)459; T. Tél, Z. Naturforsch.43a
(1988) 1154

[14] M. Tinkham, Phys.Rev. 129 (1963)2413; Rev. Mod. Phys.36 (1964) 268
[15] E. Weinberg, Phys. Rev. D19 (1978) 3008

[16] E.B. Bogmol’nyi, Yad. Fiz. 24 (1976) 861 [Soy.J. NucI. Phys. 24 (1976)449];
H. de Vega and F. Schaposnik, Phys. Rev. D14 (1976) 1100;
L. Jacobsand C. Rebbi, Phys.Rev.B19 (1978)4486


