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Prolegomena

Throughout these lectures I shall use the following notation:

3 =_?_,,
TR
L = t, = x, x2 = ¥, % =z

d x = dx dy dz dt ;

while units are chosen so that i = ¢ = 1. Summation is implicit,

M _ abpV
A"B = A"B g“u

u
3
= 3 APnghv ,
u,v=0
where guv is the metric tensor,

1 0 0 0
-0 -1 0 o
Eyv o o0 -1 0
0 0 0o -1

The momentum operator in coordinate representation is given by

Hy = <My =z -
ppu 1| =

The four-vector potential for the electromagnetic field is defined by



A= e,h) .

The fleld strengths are then

o= gV - Ve

while the electric and magnetic fields are given by

E = (-f01, 02 _g03
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Functional differentiation is defined by

o

8
Y] L” dx F(x) ¢ (x) = F(y) .

Other conventions follow Bjorken and bre11l
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I. CONTINUUM GAUGE THEORIES

A. From a Symmetry Principle to a Lagrangian

Before discussing lattiée gauge theories, it is instructive to review
briefly the concepts of continmuum gauge theories. More detalled discussioms
can be found in Abers and Leez, Taylor3, KibbleA, and elsewhere.

A fundamental ingredient of any quantum field theory (im the continuum or
on a lattice) is the action, which is given by the time integral of the

Lagrangian:

oo

s=[ Ladt =/ a*x Q{¢,au¢} . (I.1)
The Lagrangian is in turn given by the space integral of the Lagrangian
density %, which is a functional of the fields {¢} and their derivatives

{3u¢}. The classical equations of motion of this theory are derived from

Hamilton's principle:
§ [ #dt =0 . (1.2)

Equation (I.2) implies that the Lagrangian density must obey Euler's

equations,

87 X4
7 % T (1.3)

A simple example is the Lagrangian demnsity of a noninteracting scalar field,



{001 =3[ @) - ads™e] (1.4)

where m is the mass of the charged quanta associated with the quantum

theory. The Euler equation of motion for this Lagranglan demsity is
@, + w)p = (O +a)p =0, (1.5)

which 1s the familiar* Klein~Gordon equation for a spinless particle of
mass m.

For every continuous symmetry of the Lagrangian there corresponds a
conservation law. Conversely, for every conserved quantum number there exists
a transformation on the fields of the theory which leaves the Lagrangian
density invariant. The simplest example of this general phenomenon involves

electric charge. Consider a group of transformations on the fields ¢

*For those unfamiliar with the Klein—Gordon equation, it may seem less
mysterious when written in component form:

(32/3t2 - 32 + w?)p =0 ,

which, for m = 0, is just the standard wave equation. Then if the usual
quantum mechanical identification

-13 /3t »+ E

-13 + P

is made we see that the Klein-Gordon equation arises from the relativistic
kinematic requirement
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b (x) + 1% (),
(1.6)
¢*(x) > e+1qﬁ¢*(x)

where q 1s the charge of the field ¢ and § parameterizes the transformation.
The Lagrange density Eq.(I.5) is invariant under this set of transformations,
which form the group of unitary transformations in one dimension [denoted by
U(1)]. DNote that even though contains gradients Bu¢ of the fields, these
terms are invariant under the transformation Eqs.(I.6) since 8 is independent
of x [{.e., Eqs.(1.6) describe a global gauge transformatiom].

For infinitesimal & (=066), the global gauge transformation Eqs.(I.6)

reads

8¢ = -1(80)qp ,
(I.7)
56" = +1(88)8" .
The condition that the Lagrangian density & be invariant under this
transformation can be written
8 A4
8F =0 = =6 + §(@
0= 35 % Trmay t )
(1.8a)
8& * 8F *
+ §¢ + 8 (3
woF 0 tragey )

_ 8# 8L . | _



From Eq.(I.8) it can be seen that the current

- 174 8 *
o= 4 @ - ap ] (1.9a)
T ® Tregn *
is comnserved, that 1s:
auJ“ =0 . (1.9b)

In our simple example Eq.{I.5):
* %
= 142,07 - 672 0) (1.10)
and in the corresponding second quantized theory thé operator Q'

Q=] &% Iy s (I.11)
is the charge operator.

We have seen that the conservation law (Eq.I.9) arises because the
Lagrangian density is invariant under a global change of the phase of the

fields ¢(x). 1In other words, it is possible to redefine the phase of the

field ¢(x) by an additive constant, provided that this constant does not

depend on x.

It seems somewhat peculiar however that the phase conven;ion chosen at
one point should constrain the choice of convention at all the points of
spacetime. Such a cbncept does not appear to be consistent with the localized

field concept that underlies the usual physical theories {Yang and Mills5).




1f a transformation of the form Eq.(I.6) but with 8(x) taken to be a real

function of x is applied to the field ¢(x) it will transform as

¢ (x) > exp[-1® (x)]o (x) . (1.12)

Terms in the Lagrangian which depend only on the fields themselves are

invariant under this local gauge transformation, e.g.,
%* %
2% » u%e . (1.13)

However, terms involving the gradients of the fields 3u¢, such as the kinetic

energy term, are not invariant:

au¢ > exp[iqe(x)]au¢ - 1q[aue (x)] exp] 160 (x) 16 (x) - (I.14)

The Lagrangian density can however be made invariant under a local gauge
transformation by the introduction of the electromagnetic field in a fashion
usually referred to as minimal coupling. This procedure involves the
replacement of the gradient operator 3, with

Bu - 1quu(x) =D (1.15)

u?

in the Lagrangian. If, under the local gauge transformation Eq.(I.12), Au(x)

transforms in the fashion

» =1 .
A, 00 23,80) + A, (1.16)
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then the covariant derivative Du¢(x) transforms as follows:
Du¢(x) = [au - iquu(x)]cb(x) + exp| ~1q8 (x)]Duq:(x) . (1.17)

There éhould, of course, be quadratic kinetic energy terms in the

Lagrangian which couple Au only to itself. It is easy to show that
Fo2 oA, - avAu (I.18)
1s invariant under the transformation Eq.(I.16). Thus the scalar combination

CAEES P =)™ (x) | (1,19
is an acceptable Lagrangian density for pure electromagnetism (the factor‘—lld
is included by convention).

The transformation laws Eq.(I.16) are, of course, very familiar as the
"gauge transformation” of electrodynamics. What is new is the derivation of
the Lagranglan density of a gauge theory from a simple concept—-—the extension
of a global symmetry of the Lagrangian to a local one. As we will see, this
concept can be applied successfully to many types of symmetry. In particle
physics, it is important to consider groups other than U(l), If we consider a
general internal symmetry Lie group G, a gauge transformation can be written

as

¢ + exp(iLle8) . (I.20)
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In Eq.(I.12), the ¢ can be taken as a column vector and the L are an
appropriate matrix representation of the group G. These representation

matrices satisfy the commutation relations
LyLy = LyLy = [Li,Lj] = dej g1y s (I.21)

where the cjjk are the structure constantg of the group. Groups with ¢ ik 0

are called non-Abelian. For example, in the case of the group SU(2),

cijk = eijk s (I.22)
where Eijk = _Ejik = _Sikj = _Ekji = 1 is the totally anti-symmetric Levi-—

Civita tensor. One particular representation (the "fundamental"

representation) of SU(2) can be given in terms of the three Pauli matrices 14,

(1.23)

1
Li FTy e
It is possible to construct a covariant derivative Du¢(x),
Duep(x) = [au - :l.gL-Au(x)]¢ (x) (1.24)

such that under the local gauge transformation Eq.(I.20) with § a function of

X,

Duq;(x} + exp| iL-G(x)]Ducb(x) , . {1.25)
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which requires

Ai N Ai

1 i
- =9 (66 +
u ugu()

j.k
cijkcae) A.lJ , (I1.26)
for infinitesimal &9.

For this general non-Abelian gauge theory the field strength tensor is

i _ i_ i .k
Fuv auAv avAh + gcijkAuAb . (1.27)
where 1, j, and k refer to group indices. Under the local gauge
transformation Eq.(I.20},
i i

+> F

3ok 2
Fly w cijk(ae )Fw + o(66)° . (I1.28)

Thus, if the pure gauge field Lagrangian density 1s chosen to be

1 i uvi
%, 7 Tr(FWF“ ) (1.29)
then it is invariant under a local gauge transformation.

We see that given an appropriate group we can construct a gauge—invariant
classical Lagrangian. In the next section we will see how to construct a

quantum theory, given a classical Lagrangian.
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B. From a Lagrangian to a Quantum Field Theory

The method of path-integral quantization is developed below following
Abers and Leez. First, a path integral representation of the Schwinger
transformation function is given. Denote by Q(t) the position operator in the

Heisenberg picture, with eigenstates lq,t>:
Q(t)lq,t> = qlq,t> . (1.30)

The transformation function, which is the probability amplitude for finding a
particle at point q' at time t' given that it was at point d at time t is

given by
F(q',t'; q,t) = <q",t'lq,t> . (1.31)

The transformation function can also be written in terms of the time-
independent eigenstates of the Schrodinger picture. The position operator in

this picture is denoted by Q,, and is related to the Heisenberg plcture

operator by
Q(t) = exp(iHt)Q_exp(-1Ht) , (1.32)

where the Hamiltonian H is time—independent. The eigenstates associated with

the operator Q. are denoted by |g>:

Qla> = alg> | (1.33)
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with
lg> = exp(-1Ht)|q,t> , (1.34)
8o that
F(qa',t'; q,t) = <q'lexp[iH(t-t")] > . (1.35)

Now split up the time interval from t to t' into a large number n + 1 of

intervals of duration . Then, by completeness,
F(q',t'; gq,t) = <q,t+(n+l)e|q,t>
= dql...dqn<q',t‘an,tn><gn,tn|qn_1,tn_1> (1.36)
x <q__4 - !qn_z,tn_2>. . .<q1,t1|q,t> .

In the limit ¢ + 0, n + =,

<qm,tmlqm_1,tm_1> = <qm|exP(—isH)lqm_1>
(I.37)

6(qm T AQpg) - ia<qmIH’qm—l> g

If the Hamiltonian H(P,Q) can be written as a function of P plus a

function of Q [for example, if H = P2/2 + V(Q)] then

LIk L Tmw LRRL TUTT T ST S e
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-}
S

d
<qfHlq > =] Eexpltptq, - q e, —5"" .  (1.38)

Therefore, taking the Fourler transform of the delta functiom,

dp U ¥ gy
<qot la_;.t ;> =] 3 explifp(q ~q ;) -cllp, —5—]} .
(1.39)
+0(e?) .
The transformation function then becomes
n o dpi
F(q',t'; q,t) = lm T [ dq, | —¢
n+® 1=] -0
(I.40)
n+l ' q; + q;
_ _ t'-t j j1
x expli L [pj(qj qj—l) *;gq‘ﬂtpj» > )]}

which in the limit n + = is the operational definition of the path integral

PDp 24 ',
F(q',t'; q,t) = [ —5— expli] [pq - H(p,q)]dt} . (1.41)
t
If H(P,Q) = %-Pz + V(Q), then, by use of the Fresnel integral
exp[l 1sq2) = | " dp exp| 1 pq - BE)] (I.42)
Y2rie z —o = 2

it follows that the transformation function can be written in terms of the

classical Lagrangian:

'
t

?f_explif #lq,q} dt] . (I.43)
v 2n e t

F(q',t"; q,t) =]
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Similarly, the expectation values of various operators can be expressed
in terms of path'integrals. For example, if a time-ordering operator T is

defined by

QEAE,)  (£>t,)

then it follows that the expectation value of the time-ordered Greens function
is given by:

tl

2L g(edaltdexli ] #(a,)dt] . (1.45)
t

2rie

<a’,t'lTlQ(e))a(t,) ] lg,e> = |

The expectation value of operators in the ground state (i.e., the vacuum
expectation values of the theory) are calculated by taking the limit t + —»,
t' + =. By making a Wick rotation (t + -1T) to imaginary times, it follows
that

ao

92‘[18 aep)eeaeem( - & Zoea,)] , (1.46)

<olrfe(t )...at H]l0> = |

where $€E is the Lagrangian density in Euclidean space. Note the resemblance
between Eq.(I.46) and the canonical ensemble of classical statistical
mechanics. This correspondence will prove to be very useful in the following

discussion.
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II. GAUGE THEORIES ON A LATTICE

A. Motivation

In the last section the structure of gauge theories in the continuum was
presented. In thié section, true to the title of these lectures, they wifl be
formulated on a lattice. It is first appropriate to review some of the
reasons for approaching quantum field theory in this fashion.

Historically the motivation (Wilsonﬁ) for formulating field theory on a
lattice was in order to study a local non~Abelian gauge theory known as
quantun chromodynamics, or QCD. This theory, which can be derived by the
application of the techniques of the last sectiom to the group SU(3), 1s at
present the best candidate for a theory of the strong interaction. Itlis
widely believed that hadrons (neutroms, protons, pioms, etc.) counsist of
gubunits called quarks, which are bound together by the forces of QCD (called
gluons).

One important property which hadrons seem to possess is called
confinement. If quarks are confined inside hadrons, then it is impossible to .
break hadrons apart and separate the quarks. Despite a paucity of precise
predictions, the conviction is growing amongst particle physicists that
confinement does 1lndeed occur. It would be useful to be able to derive
confinement from QCD. However QCD is a difficult theory to solve and caan at
present be analyzed only perturbatively in extreme kinematic regions.

Unfortunately perturbation theory, generally the most usefui tool of the
field theorist, has failed to give any clear signals of confinement in QCD.
In fact renormalization group arguments can be used to suggest that at large

distances the effective quark—gluon coupling constant imn QCD becomes large, so
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any perturbative expansion must break down. Clearly what is needed is a
systematic, non-perturbative method of analyzing field theory. Such a method
mst surmount several obstacles, however.

One important problem of quantum field theory is the presence of
ultraviolet infinities in the theory. Traditionally these infinities are
handled by a procedure known as renormalization. If a theory is
renormalizable, all infinite quanitities can be absorbed into a few parameters
of the theory--such as the electric charge-—which are replaced by their
experimentally determined values. In perturbation theory, a multitude of
renormalization techniques exist. These techniques usually rely upon the
introduction of a high momentum (small distance) cutoff to render all
quantities finite. The final stage in a perturbative calculation is to take
the limit as the cutoff is removed; physical quantities such as the magnetic
moment of the electron then approach a value which is independent of the
renormalization prescription used.

The lattice formulation of quantum field theory provides an excellent
framework for handling ultraviolet infinities. On a lattice, wavelengths less
than the order of magnitude of the lattice spacing a are meaningless, and so
therefore are momenta greater than ~o(fi/a). This cutoff is defined without
reference to perturbation theory, and so is ideal for non-perturbative
calculations. Lattice field theories are also amenable to numerical analysis,
and thus may assist our understanding of nonperturbative aspects of field

theory (such as confinement).



19

B. Compact Electrodynamics [U(l) Lattice Gauge Theory]

Probably the simplest lattice gauge theory with which to begin our
discussion is the theory of quantum electrodynamics (QED) without matter
fields on a lattice. In the continuum, this theory is completely soluble and
describes free photons. Such a lattice theory presumably approaches the
continuum theory in the 1limit {n which the photon wavelength is large compared
to the lattice spacing.

Recall that in the continuum Fuclidean theory expectation values of field

operators ¢ are defined by

| @A @{Alexp[- ] dax FuuFuu]

) (I1.1)
[ @A exp[-f d*x Fquuv ]

where

gA =11 dAh(x) . (I1.2)
xu
In order to discuss how the Wilson férmulation of lattice gauge theories
is related to the continuum theory it is useful to consider a four dimensional
version of Stokes' theorem. Lef S be a surface element and dSuv be an
infinitesimal element embedded in this surface. Stokes' theorem states that
the line integral of Au around S is equal to the surface integral of Fuv:

M - v |
f Aae ]dst" , (11.3)

S s

where
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I L\ A (II.4)
Consider the quantity
1§ A (x)de
_ 1 P
L(x) =—x][1-e ] (I1.5)
2a [

where the sum over "plaquettes” [] refers to a sum over the d(d-1) orthogonal

2

square surfaces of size a“ whose lower left hand corner is at the point x, for

example, in two dimensions,

o= + . (11.6)
| X X
In four dimensions, there are a total of twelve such plaquettes per spacetime
point. Stokes' theorem implies that,
dax'

Z(x) ='—lf J - [6 -~ cos azEx - cos azEy - cos azEz
2a° S(x') a

(I1.7)
~ cos a’B_ - cos a®B_ - cos a’B ] .
% y z
In the limit where the lattice spacing a + (,
2@ > = [P + B, (11.8)

which is the Euclidean action for QED in the continuum. Following Wilson the

gauge fields are rescaled by the bare lattice coupling constant g0

e T T R T T A TS U
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M)+ L (11.9)
By

and so the QED continuum Lagrangian density becomes

2x = L5 B + Bw) - (11.10)
230

The above discussion is meant to provide some motivation for proposing a

6,7

lattice Lagrangian density which is a discrete version of its continuum

counterpart Eq.(I.19):

1 -1 -1
S =— 7 (1=-vu_ v U U ") (11.11)
lattice 233 n,u#v n,u ne,v nv,u o,v
where
U = expl1ad'(n)] , (1I.12)
n,y .

and UL = Ut is the Hermitian conjugate of U. The notation AY(n) refers to
the variable located at the link leaving site n in direction y. Thus the sum

in Eq.(II.11) is over all plaquettes whose lower left corner is at the site n:

n+v ot

Each of the AY(n) is an independent variable. Because of the periodicity
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of the complex exponential, each field is integrated over a finite range (i.e.

the theory is compact):

- < aat(n) <« (II.13)
so that
m u o
- — -, -
S <A (n) S (1I.14)

Note that in the limit a + O the range of integration increases without bound
and the theory becomes noncompact in the continuum limit, as it should. Also
note that the action Eq.(IX.1ll) is invariant under the local gauge

transformation

U  +vVU V (II.15)
where the V, are elements of the group U(l), i.e.,

Vv =1. (I1.16)
It is instructive at this point to consider the theory of compact
electrodynamics on a periodically continued 2 x 2 lattice. This theofy is
soluble in closed form, and will assist in the specification of conventions
and other details. There are eight independent links connecting four
spacetime points. The points are labelled 1, 2, 3, and 4; the connecting

links are as shown:

LRI L BN LI LR A U T A LR R T TR B AL T T A
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23

1 o1 9 o7 1
r -1 —
Ug Ug Ug
4 %3 3 's 4
T —<
Uy Uy
1) 2} Yy

If each of the U, is parameterized in the fashion

#%_
U e ", (11.17)

where the ¢ are real flelds ranging from v to m, then the action S is given

by:

i(p.+¢,-0,—¢,)
S =4 - Re[% 1 2 3 4

e + e

G PR ¢8)]
+ e .

The partition function of this system is defined by
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8 T &
2= (1 [ HHeP°,
i=] -
(11.19)
- 2
B =1/g, ,

where g, is the bare lattice coupling constant and the average plaquette is
given by

P=lc¢s>=-2_snz (1I.20)

G 3B : )
Because of the local gauge symmetry in the action (and the periodic

boundary conditions) there are only three linearly independent combinations of
variables in the action, and thus really only three integrations to perform.
If the integrations over the variables ¢1 and ¢y are performed, the result is

-4B8.2 1 ._ -gt
e 810[23 o8 3 (b= b, + b .~bg)] =7 (II.21)

so it follows that

T d¢ et
Z=I i?r'-%es

-fn'
(11.22)

EF-Ig(ZB cos 8) .,

m
- e 4BJ de
—-“'
It is easy to see that P ranges smoothly from unity (at B = 0) to zero (as

B > »), Since the system under consideration is finite, there are no phase

transitions; and thus P is analytiec for all B:
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v

B
Let us now consider compact electrodynamics on a hypercube of side N
lattice sites embedded In d dimensions. There are %-d(d-l) plaquettes per

lattice site; thus, the average plaquette is given by,

e [-g—e-ln z) , (11.23)

where,

| @4e®S (11.24)

as usual. It is also useful to consider the expectation value of

L&)z 1 U _ . (II.25)

The field L(?) is just the product of N links in the time direction along a
straight line. With periodic boundary conditions, it can be considered a
“loop around the universe”. It can also be shown (Kuti,-gzugl:;s McLerran and
Svetitskyg; Héisslo) that the expectation value of L is related to the free

energy of an isolated charge F, by



- LR T T IO I IR E, N T R T T TSR
USRI PR e e R R A TR Y mn L REIURL TSR TRSE B "

<L>

11
N
‘_-
0
-e.
[l
(]
{
"

d {II.26)

The expectation value <L> can thus be used as a test for confinement in a
gauge theory. If changes are unconfined, Fo 1s finite and so therefore <L) is
nonzero. If however charges are confined there are no free charges and F, is
infinite, so <L> = 0. Deconfinement phase transitions are thus signalled by
the nonvanishing expectation value of <L>.

In two and three dimensions there is no deconfining transition in compact
electrodynamics. Hoﬁever, in four dimensions such a transition is present in

an infinite lattice system, and a plot of <L> versus £ looks like:

<L>

The phase transition at B = 1 is second order, so the derivative of the

average plaquette is also infinite at that point:
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C. Non-Abelian Lattice Gauge Theories

It is not difficult to extend this formalism to non-Abelian gauge

theories. For SU(2) in the fundamental representation the U, y are given by,
»
Upp = exp[iBu(n)] , (I1.27)

n,

where
i
Bu(n) ag oiAh(n) . (11.28)

and the ol are the familiar Pauli spin matrices. The link Un,u can also be

written in the form

U, = agl + 123 (1I.29)

N +a" =1, (II.30)

In terms of these variables, the invariant group measure takes the form

(Creutzll)
au = —37 §(a% - 1)d*a (II.31)
o

while the action is given by
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s=j[1-1 rr(Un,uUn+u,vU;1v’uU;va] (11.32)
where the sum extends over all plaquettes as usual. The formalism is similar
for lattice SU(3) [compact quantum chromodynamics].

In four dimensions there is no deconfining transition for SU(2) or SU(3)
in the fundamental representation——<L> ig zero for all B. It is possible to
calculate a quantity known as the string tension in the lattice theory, which
is related to the potential energy between two charges [for SU(3) we can call
them quarks] in the fundamental representation. This calculation begins with
a study of Wilson loops.

For a closed contour C comprised of links in the latticé, the Wilson loop

is defined by

W(C) = <§ eI ), 0>, (11.33)
C

where the subscript PO means "path ordering”; the U, y are ordered and
]
oriented as they are encountered in circulating around the contour. For a

confining theory the string tension K is determined from W(C) by

in W(C) = —aZKND (C) (I1.34)
in the limit of lérge loop size. Here a is the lattice spacing and ﬁj(C) is
the number of plaquettes enclosed by the loop. The static potential between

two fundamental representation charges is then

v(r) = Kr , (I1.35)
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at large distances. Note that if K is greater than zeroc then it is impossible
to separate charges by infinite distance without using iufinite energy.
Therefore, if K is positive in the continuum limit, then quarks are

confined.

A digression on the continuum limit of a lattice gauge theory is relevant
here. Not all values of the bare lattice coupling constant gy cam be
identified with a coantinuum limit. A necessary condition for a continuum
theory to exist is that a second order phase transition occur at the value of
gg under consideration. This condition is mandated bf the requirement that
the lattice correlation length (in units of the lattice spacing) approach
infinity or, alternatively, that the lattice spacing approach zero as the
contimwm limit is taken. A continmuum limit of SU(2) and SU(3) is believed to

exist in the limit B + = (g4 > 0).
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III. TINTERACTION OF GAUGE THEORIES WITH SCALAR MATTER FIELDS

A. Spontaneous Symmetry Breaking and the Higgs Mechanism

The first successful application of non-Abelian gauge theories to
particle physics occurred in the development of the theory of the weak

3 for a chronology). Let us try to recreate

interaction (See, e.g., Taylor
some of the logic which led to such an application.

The so-called "weak" interactions are characterized by various definite
signatures {(such as parity viclation) and by an unusually slow rate of

interaction in low energy processes. Cross sections ¢ are typically

proportional to the Ferml weak coupling constant Gp,
g~ G~ —a—, (I1I.1)

where Mp is the mass of the proton. Such a small reaction cross section is
indicative of a very short-ranged interaction. By the correspondence
principle a short-ranged interaction (of range r) can be associated with the
exchange of a Qery massive particle [of mass M~ #/(cr)}. The weak
interaction is generallﬁ associated with the interchange of particles of
roughly 100 times the mass of the proton.

The next step 1s to construct a consistent quantum field theory involving
the exchange of a heavy particle. For reasons which will not be discussed
here, a theory of the weak interaction should associate a vector field with
the particle. It is aesthetically attractive to model the weak interaction
with a local gauge theory. However, a major difficulty remains. The pure

gauge theories discussed in the previous section described massless

oy m Lo L L T T g D T R
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particles. How can we make a local gauge theory of massive particles?
To appreciate the difficulty involved in constructing such a theory, let
us see why a simple attempt to do so falls. Remember that a massless scalar

field theory is described by a Lagrangian density

1 u,*
Lmassless i'(au¢)(a ¢ (I11.2)

with an Euler equation of motion,
0¢ =0 . (II1.3)

A massive scalar field is described by essentially the same Lagrangian

density, but with a "bare mass” term added:

2

- 1 H * _ 1 [3
=5 (3,0)(3%7) - 5 ates” . (III.4)

‘ghassive

The equation of motion for this massive scalar theory is
(O+ o) =0 . (III.5)

Similarly, the Lagrangian density for, e.g., free U(l) gauge theory is given

by
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ny
(I11.6)
Fuv = BuAv - BvAu .
which (in the Lorentz gauge 3UAP = 0) leads to the equation of motion
[ZIAu =0 . (111.7)

The most obvious way of constructing the Lagrangian density for a massive
"U(1)" theory would be to add a quadratic mass term,

2_1 \Y 1 2, .
Lrnssive ; Fqu“ gy A, (III.8)

This Lagrangian density gives rise to the equation of motion of a massive

vector fileld,
(O+ w®)a¥ =9 , (111.9)

Unfortunately the Lagrangian density Eq.(III.8) is not invariant under local
gauge transformations. It is this lack of local gauge Invariance in theories
with bare mass terms which leads to inconsistent theories and is the source of
the trouble alluded to above.

In order to create a local gauge theory of the weak interactioms, it is
necessary to "smuggle in" an effective mass term. One way to accomplish this
covert operation is by way of a comcept known as spontaneous symmetry

breaking. Following Abers and Lee?2 » this concept is explored below.

IF V1] JIMIRAMNIN B[ o s o0 et e i B B (e
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A scalar field theory is very similar to a collection of anharmonic
oscillators. Consider a Lagranglan density representing a single-component

self-interacting scalar field,

£=-;- (a“¢)(au¢) + U2y , (111.10)

with

U(¢2) = k(d>2 - f)2 . (III.11)

For simplicity, let there be only one space dimension. Then the Lagranglan is

o

L=] £L(x,t) dx

-0

(III.12)

o

=de [%(%%]2—%(%%2—U(¢2)] .

Divide space into unit cells of length € labelled by the coordinate x4,
so that xy4y —- Xy = €. If a separate canonical coordinate qi(t) = ¢1(xi,t) is

associated with each cell, the Lagranglan can be written as

o dq, 2
1 i 1 2 2
L= Z [_f(a"t_-J - —7 Lqi = qi-l) - U(qu] . (III°13)
i= - 2e
The canonical momenta are
dqi
Py T qE (I11.14)
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and so the Hamiltonian is given by

S 12
i= -
where
v -1 2 2
(93,94_;) % (45 = a4 27 +U(q)) - (II1.16)
€

The Hamiltonilan Eq.(ILI.15) describes a system of anharmonic
oscillators. The oscillations are bounded if A » 0, which is therefore
assued. In order to ascertain the ground state of the theory, it is
necessary to determine the minima of the potential V. At the minima, the q4
are all equal, so that (qi - qi__l)2 = 0. Thus the minima of V are determined

by the minima of U. If f is negative, the potential U looks like

U(q)

v

A

80 the ninimum of U (and thus the ground state of theory) is given by
q; = 0. The Lagranglan of the theory is symmetric under the interchange q +
~qi, and so is this ground state. Spontaneous symmetry breaking does not

oCccur.

On the other hand, i1f f is positive, the potential function U(q) looks

like,

NN PPN AR 11RO KSR LSRN ] A e 10 RELL LU UL LR TR R IR U R UL IS B I T T

LUL R LTURT - 1 N LTI TR 0



35

U(q)

h 4

and so the symmetric minima are at q; = & YE. Note that the ground state must
have either q; = + ff_gE Q4 = —f. By convention, the plus sign is chosen.

In the original scalar field theory, the vacuum expectation of ¢ is given by

<¢> = v # f. Although the Lagrangian of the theory is symmetric under the
reflection ¢ + —¢, the ground state is not (since Yf # /f). In this way the
reflection symmetry is “"spontaneously” broken.

This phenomena may also occur when gauge fields are present. If the
scalar field theory discussed above is generalized to a two—component (i.e.,
complex) theory and coupled to a U(l) gauge field, the Lagrangian is

[, + ieAu)¢*(3u - 1ea")] - A [ e) - £]2 - %-Fqu”“ . (III.16)

This Lagrangian is invariant under the local U(l) gauge transformations,
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¢ (x) * ¢ (X)exp[-18(x)] ,
* *
¢ (x) * ¢ (x)exp[+i0 (x)] , (I11.17)
1
A (x) » A () - TE.aue(x) ,

and corresponds to a self-interacting charged scalar particle.

As before, if f is negative, <$> = 0, and symmetry breaking need not
occur. If f is positive, spontaneous symmetry breaking may occur, and in that
case <¢6> = v = Yf., 1In order to define perturbation theory about this vacuum
it is necessary to define the theory in terms of fields whose vacuum

expectation values vanish. The new real fields n and £ are defined by
¢ =v +n + if, (I11.18)

where <{n> = &> = 0.

Written in terms of these new fields, the Lagrangian is

F= -.}F;up'“" +% >,n a¥n +-;-m2Al:A'u + s (1I1.19)
where A! = A - 36> Fl, = 0 Al - AT, n? = e%?, and the ellipsis (...)

refers to terms which are higher order in the fields. Although the gauge
symmetry of the Lagrangian is no longer manifest, it does have the form of a

Lagranglan for a massive vector field Aﬂ coupled to a real scalar field* n.

" INMICE UL b O ETURAR B (1P RRL LRI LRI W P N O] WO IR R 1 AN LDy T TR 1 R 1 O S IR R 8 ®rETR R 1Y 1MORE P 1Y YRR EISIN R SIF Ty 0 90 IR IR 1B L

*The alert reader may notice that the field € 1is not present in the new
Lagrangian. This disappearance is a standard feature of the Higgs mechanism,
and is discussed in Abers and Lee.
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This method of "generating” masses for a gauge theory via the Higgs

mechanism was successfully applied to a mixture of SU(2) and U(2) gauge

theories to produce a theory of the weak interaction (see, e.g., Taylor,3

2 13).

Abers and Lee,2 and the original work by Weinbergl and by Salam Thus the
concept of spontaneous symmetry breaking may be relevant in particle

physics.

B. The Abelian Higgs Model

As we have seen in ﬁhe last section, the presence of matter fields can
exert a dramatic effect on the behavior of a gauge theory. In the case of the
Higgs mechanism, the interaction of the scalar fields with the gauge bosons
rendered them massive and thus the forces they mediate short ranged. The
importance of this mechanism thus suggests that we study it further.

The Abelian Higgs model provides us with an excellent prototype for the
study of more complex models of matter interacting with gauge fields. It
consists of a scalar field of fixed magnitude coupled to the field of a
massless photon in a U(l) gauge-invariant fashion. As is shown below, the
model can be thought of as an appropriate large——self-coupling limit of a
lattice version of scalar electrodynamics. The analysis of the Abelian Higgs
(fixed magnitude) model may thus furnish insight into the nature of the more
general but noncompact (variable magnitude)} model. Excellent discussions of
the model appear in, e.g., Fradkin and Shenker]'4 and references contained
therein. Preliminary Monte Carlo results appear in Callaway and Carson;15 in
Bowler, E.EE}.-;M and in Ranft, El:__ai.”

The Abelian Higgs model is discussed here on a hypercubic Fuclidean

lattice with lattice spacing a. A Higgs field /§§'¢n is defined on each site
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n of the lattice, subject to the coanstraint

ls 12

al = 1 for alla . (1I11.20)

Electromagnetic field variables Unu are associated with each link counecting
site n with site n+pu. The intermnal symmetry group is U(l), so that ¢, and Unu

i6

are simple phases e*”, with -m < 8 < m. The dynamics of the interacting

system are governed by the action

A =87 A (nu,v) + By L Ay(n,u) (I111.21)
| ,u

where the plaquette A and scalar Ay actions are given by

A = -
(n,u,v) (1 Un’v Unﬁj Wi, Uﬂsv
(I11.22)
1
Ay(n,u) = 5 (Un,u

As seen below, the power q is to be identified with the charge of the Higgs

field. The action is locally gauge invariant with respect to the set of

transformations
q + q
(Un’uj * H"HJ[UH,]JJ Vn »
(III.23)
bo > Vb
ia

where the V, = e % are elements of the underlylng U(l) gauge group.

L S
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The constraint I¢n12 = 1 can also be implemented by allowing the
magnitude of the scalar field to vary (i.e., by integrating over this
magnitude) but including a suitable potential term in the action. Omne

possible extension of Eq.{III.21) is
A" =8 JA (n,u,v) + 8.1 Ag(m) £ ] (chnl2 -2, (a2
O ny n

Note that in the limit A + = configuratioms in which I¢n| is different from
unlty are not important.

With the interpretation

B = 7 »
e
By 0 = ab(x ), (I11.25)
U, , = expliaeA (x)] ,

in terms of the lattice spacing a and the electric charge e, the naive
continuum limit (a + 0) of Eq.(III.24) yields the familiar Euclidean action of
scalar electrodynamics:
4 rl .2 1 I 2
T -
Al tnuum [ &=y Fo(® +3 (au + iquu}Q(x)
{IIL.26)

+ar(leml? - 67,

with
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At s ii‘ (1II.27)
By
and
By
£ = . (I11.28)
a

The parameter q specifies the charge of the Higgs field ¢ in units of e.*

Let us return now to the lattice Abelian Higgs model and study its phase
diagram in some limiting case:

1) First for BH = 0 the action Eq.(III.21) reduces to the action for
pure QED, discussed in Section II. Recall that there was one {second order)
phase transition as a function of B (at B = 1),

2) In the 1limit B + = 311 the Unu's are gauge equivalent to unity. Thus
the action can be written in the form

A+ By y [ - cos(® -6 (II1.29)

)
0, nh ]

which is the action ("Hamiltonian") for the XY model. In four dimensions,
this model has a phase transition at By = 0.453.
3) As By increases without bound, the action approaches that of a Zq

gauge model, viz:
-1 -1
A+BJ(-umw U ), (1I1I1.30)

subject to the constraint

*Note that this is merely the naive continuum limit of the theory. Extracting
the continuum limit in this fashion, strictly speaking, i1s invalid since the
simple a + 0 1imit is singular. See Callaway and Carson.l>

PR | v e iy T B
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Ag = 0. (I11.31)
In the unitary gauge (¢n = 1), the constraint Eq.(III.31) can be written

Y [1~-Reu_»9] =0, (IIX.32)
nu ™
or

(Unq)q =1, (II1.33)

In this discussion we will look at the ¢ = 1 and q = 2 Higgs phase diagrams.
For g = 1, the constraint Eq.(III.33) simply implies that all the U's are
gauge—equivalent to unity, and so the theory is trivial in the limit of large
Bys For q = 2, this constraint restricts the variables Unu to be equal to t1
(in the unitary gauge); the theory thus approaches a Z, gauge model in this
limit. The four-dimensional Z, lattice gauge theory has a phase transition at
By = 5 (1 +/3) = 0.44069.

4) TFor B = 0 the action in the unitary gauge takes the form

7 [1 - recu_ Y] . (ILII.34)
o,k :
n,n
The partition function factorizes in this limit, and so the model is trivial
(no phase transition occurs).
These results can be used to sketch in the phase diagrams of the q = 1

and q = 2 theory near their edges:
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qg=1
By @G> 40
] (axial gauge)
<G> =0
i &
0 Confinement Deconfinement o
B
22 transition
oy
. 4
q=2
BH 4> #0
(axial gauge)
-— G$> =0
0 Confinement Deconfinement o

The above analysis suggests the existence of (at least) three distinct

phases in the Abelian Higgs model. Properties of these phases are listed

below:

1) Higgs Phasge:
Massive gauge bosons (<¢> # 0)

Short range forces between charges

FYIRPRALN [0 AL ESYTMIE4IM 1 A (51 R AR LB U1 FURPYINE DT IR BN I AT IR FE0 W0IE 1 S 000107 %0111 8 R ma Y018 W NI e g 4 g1 0 e 7 e A | e g



43

2) Coulomb (or Electrodynamics) Phase:

Massless gauge bosomns (<{¢> = 0)
Coulomb force law between charges
Free charges exist (F, finite, <L> # 0)

3) Confinement Phase

Massive gauge bosons

No free charges (F, = =, <L> 03]

1 and 2 has been determined by Monte Carlo

li

The full phase diagram for g
methods (Callaway and Carson;15 Bowler 33"31:;16 Ranft,fﬂijgrlyl With the aid

of the above discussion, the various phases may be identified:

Higgs

"Conf"

Coulomb

0 B b
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q=2
Higgs
By
Conf,
Coulomb
0 B ®

Notice a rather surprising result-—for q = 1 the Higgs and confinement
phases are continuously connected. In fact, 1t can be shown (Fradkin and

Shenkerla)that there is a region of analyticity for q = 1

in the (B,BH) plane where the free energy and its derivatives are analytic.
The physical origin of this analyticity arises from the fact that charge one
Higgs can screen fundamental representation (q = 1) fermions and thus spoil
confinement. On the other hand, a charge two Higgs particle can never screen

a2 charge one fermion, and so confinement 1s absolute for q = 2.

T T O Y
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C. Nonabelian Higgs Models

The above analysis has been generalized to the case of an SU(2) lattice
gauge theory interacting with fundamental representation Higgs fields
[corresponding to q = 1 in the U(l) case], and adjoint representation Higgs

fields [corresponding to q = 2]. The phase diagrams were analyzed by Brower,

18 19

et al. and are sketched below:

and Lang, et al.,

FUNDAMENTAL REPRESENTATION HIGGS:

Higgs
BH
Conf inement
0 B o
ADJOINT REPRESENTATION HIGGS
Higgs
By
) \
Conf inement
0 B o

Note that, except for the lack of a deconfining tranmsition for By = 0,

the phase diagrams are remarkably similar to those for the Abelian Higgs
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model. In both cases, fundamental representation scalars can screen
fundamental representation fermions and spoil confinement. Thus the
confinement and Higgs phases are connected when the Higgs fields are in a

fundamental representation.
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IV. FERMIONS ON A LATTICE

A. Basic Formalism

In order to complete a lattice version of the theory of the strong
interaction, we have to have a way of putting quarks on the lattice. Quarks
are fermions, and their inclusion in lattice gauge theories has been the
source of most of the frustrations of the field. Their addition to the
lattice framework requires the introduction of a strange algebra—-Grassmann
variables——and their simulation by numerical means is guaranteed to strain the
capacity of the most advanced computing systems. Yet with all their
difficulty they are essential, for they are the fundamental components of
hadrons.

In the path integral formulation of quantum field theory, fermions are
represented by Grassmann variables. A detailed discussion of these variables

can be found in Berezin20 (see also Kadanoff;21 Wilsonzz),

however, a few
simple preperties of this algebra are all that is required here. The basic

elements of this algebra are statistical variables Y., Wi which anticommute:

y wj +Y Y = {wi,\yj} =

|
]

(1Iv.1)

1Y ji={vi,~rj}=0.

These relations hold for all i and j, and specifically for 1 = j. Thus the
square of any element 1s zero:

(Y = (\?i) =0 . (IV.2)

i’
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The relations Eqs.(IV.1l) and (IV.2) imply that any function of the

Grassmann variable ¥ is of the form

f(x) = a + ¥ (Iv.3)
where a and b are real numbers. 1In order to perform a path integration a
table of integrals for Grassmann variables is needed. The first entry in our
table is the integral

[ a¥r v =1 , (IV.4)
where the value of unity is chosen by convention. The value of the integral
is not affected by the translation ¥ + ¥ +n, where n 1s another Grassmann
variable. Thus
Jar ¥ =/ ¥ +n)E@ +n)
=[ a¥ ¥ +f g¥ n (IV.5)
1=1-n/d¥ .

Therefore, the next integral in our table is

[ a¥=0. (1v.6)
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All other integrals over a Grassmann algebra can be written as linear
combinations of the integrals Egqs.(IV.4) and (IV.6). Thus our table of
Grassmann Iintegrals is complete.

Notice that the operation of integration over a Grassmann algebra cannot
be represented as a sum with positive weights. For this reason some of the
standard theorems of statistical mechanics fall for systems represented with
Grassmann variables.

Before proceeding further, let us calculate a simple partition functiom
involving two Grassmann variables in order to illustrate the above concepts.

The action of our system is taken to be

s=a%y , (1v.7)

and so the partition function is

Z =/ a¥ | d¥ exp(-A ¥ ¥)
(IV.8a)
= [ a¥ [dF (1 ~AT¥Y¥)
(since ¥2 = 92 = 0)
=-A[ a¥ {J 4F ¥)v (1V.8b)
(since [ a¥ = 0)
= -A (IV.8c)

(since [ d¥ ¥ = [ a7 ¥ = 1).
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Note that 1f A is positive, the partition function is strictly negative.
Certainly we are in the midst of strange concepts.

Another peculiar result arises if a multiplicative change of wvariables
¥ > AY = ¥' is made. Since the value of the integral must remain fixed under

this change of variables,

Jav ¥ =] a¥r vy

{(Iv.9)
= [ d¥' Ay
it follows that if
¥ =AY (Iv.10a)
then
a¥ = %-d? (IV.10b)

in distinct contrast to the laws of integration we are used to.

B. Fermions Without Gauge Fields

The above analysis is now generalized to a system with many degrees of
freedom. A further discussion can be found in Kadanoff.2l Consider a
fermionic system with a single fermion action

S(1) = - (Y1) + F(LI,2)¥(2) + ¥ (Z,1)¥(1) . (IV.11)

The action for the system is the sum of this single coordinate action over all

W WY I PORRTIE RN TR SRR U A 19 O R0 8L 0 rinn (LR » LRI UL TRLI R LR
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fields 1. We adopt the convention that all barred indexzes are summed over.

Note that ¥(1) is a vector and I(1,2) a watrix. For convenience the notation

n(l) = £(1,2)¥(2) ,

n(l) = ¥z (2,1) , (IV.12)

is used.

Because the Grassmann variables anticommute, it follows that

S o1 C F)wa) + Fn(L) + ) - FLOY)AA)IN() . (IV.13)

The two~point Green's function G(1,2) is defined by

G(l,2) = %. (o Trnes(“)]w(l)\'i(z) . (IV.l4a)
)1
with
z =[n Trnes(n)] . (1vV.14b)
n

It is easy to see that



52
Trles(l) = =1 +n (LN (L) (IV.15a)

e SWMye1r3 -
r e  RF(2) = n(2)¥2) (1 2) (1V.15b)
= -1 (1 = 2) (1V.15¢)

and therefore

Trles(l)W(l)W(Z) - Trles(l)n(Z)W(Z) (1% 2) (1V.16a)
= St Pvnanmw] a-2 . (IV.16b)

The Green's function can then be written
6(1,2) = [1 - 8(1,2)]2(1,T)6(1,2)
(IV.17)

+6(1,2)[1 + £(1,1)6(1,2)2(2,2)]

where §(1,2) is the Kronecker delta symbol. After some symbol manipulation we

obtain

G(1,2) = 2(1,1)6(1,2) + §(1,2) (IV.18)

which has the symbolic solution

(Iv.19)
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53

The partition function is also easy to evaluate. Note that if we change )

infinitesimally,

§(ta 2) = = [I T S Is2(I,2) | TN
nn
(IV.20)
= "'[ ¢L (I 3-2-)] G(§ ST) >
where the minus sign arises because we must anticommite ¥ and ¥. This
relation can be integrated to read
§ (¢n 2) =8 [Tran(l - 2)] = (Iv.21)
and so, since Z =1 1if E =0,
fn Z = Tr £n(1l - ) (IV.22)
or
zfermion = exp Tr &n(l - L)
(1v.23)

= det (1L -I) .

Thus, to calculate the fermionic partition function we need the determinant of
the matrix 1 - I. Parenthetically, it is interesting to note that the

corresponding result for scalar (boson) fields is [compare Eqs.(IV.10)]



54

in = -Tr(l ~ L) ,

Zboson
or (1V.24)
-1
Zyoson = Ldet(l = I)]7T
Now that we have developed a formalism, let's apply it to the problem of
calculating the free fermion propagator on a lattice. This propagator has
internal spinor indices which appear in multiplication of the Dirac matrices

Yq» Where a ranges from one to four. The Dirac matrices obey the Euclidean

version of the standard anticommutation relations, 1i.e.,
{Ygs¥gl = 28(a,8) .« (IV.25)

In the Wilson formulation of lattice gauge theory, the action for bare

fermions has the form

S =K ] [¥()(1 -y )¥m - u) + ¥(@)(L +v ¥ +ud)] -] F)¥(n) , (IV.26)
n,u L H n

(with ¥ = w*yo) which gives

) (xl,xz) = K E [(1 - YG)G(XI - X, - ;aa)
(Iv.27)

+ (1 + Ya)G(x1 - x, + eaa)] s

so that
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(p) = 2K} [cos(pua) - iYusin(ppa)] .
N
(IV.28)
_ 1
G(p)_l_zp)'
Next define a new variable m,
4.
m = E'(l - 2dK) , (IvV.29)

where d 1s the dimensionality of the lattice system. If in taking the
continuum limit (a + Q) K is allowed to approach 1/2d in such a fashion that m
remains finite, then we recover the continuum Euclidean Dirac propagator for a

fermion of mass m;

(p) = = . (IV.30)

Gcontinuum

C. Fermions Interacting with Gauge Fields

It is easy to see how to include the interaction of gauge fields with
fermions in the Wilson formalism. In addition to the usual pure gauge part of

the action, there is an interaction term

= T + - - '
Sp = K n)zu[\v(n)un,uu Yu)‘i’(n w) + ¥(n)(1l + Yu)Un

LY )]

(1Iv.31)

-} ¥()¥(n) .
n

Equation (IV.31) is, of course, just the gauge-imvariant generalization of the

pure fermionic action Eq.(IV.26). If V  is an element of a unitary gauge
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group of which U, y 1s a member, then 5S¢ 1s invariant under the local gauge
3

transformation

T s ¥ v: (IV.32)

U + VU ¥V .
n,u n n,g n#
Integrations are performed over all fermion fields (represented by the
Grassmann algebra) and all gauge fields. Thus the partition function 1s given

by

= | @u DY DY exp[ - §

Zgauge+fermion gauge - SF]

(1v.33)

= [ DU exp| -5 (U)]det[1 - ()] ,

gauge
where the matrix I(U) is the gauge-invariant generalization of Eq.(IV.27). 1In
practice, the determinant appearing in Eq.(IV.33) makes the evaluation of
expectation values by Monte Carlo techniques very difficult, for it is a
highly nonlocal function and requires a relatively large amount of computer
time to evaluate.

Expectation values of various fermionic operators can be calculated in
the ensemble defined by Eq.(IV.33). Typical examples include the propagators

of hadronic states, which have the form
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6o ™) ~ FOWOT(x)¥ (x)> (IV.34)

for mesonic (two quark) states. In this case, the gauge group is SU(3). On a
periodic lattice of length L, the propagator at large distances should
approach the form

(x) ~ e—m(L—x) + ¢ MX

Ghad {Iv.35)
where m is the ground state mass of the meson under consideration. Thus meson
masses can be calculated by evaluating the vacuum expectation value of a
product of four operators. Similarly a baryoun mass can be extracted from an
expectation value of the product of six operators. [See Hamber and Parisi,23

and Weingarten].24
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V. SUMMARY AND OUTLOOK

During the course of these lectures, we have encountered many of the
concepts presently used in elementary particle theory. We have explored the
concepts of local gauge symmetry--one of the building blocks of modern
theories of particle interactions——and used it to construct a Lagrangian.
From there we developed the concepts which allowed ﬁs to formulate a quantum
field theory.

True to the title of these lectures these gauge theories were then cast
in a discrete form after the fashion of Wilson. With this prototype in hand
we then explored the ways of coupling scalar (boson) matter fields to the
theory. This led to the application of the concept of spontaneous symmetry
breaking to particle theory. One result was the so—called Higgs mechanism,
which allowed the generation of massive gauge bosons without violating local
gauge invariance. The presence of these scalar matter fields also produced a
new phase——the so-called "Higgs phase“——in the phase diagram of the lattice
théory.

From there we moved on to discover fermionic matter fields and how they
can be brought into a lattice theory. This required the use of a strange new
algebra based on Grassmann variables. These variables-anticommute with each
other and so many of the standard theorems of statistical mechanics (such as
the positivity of the partitiom function) fail when they are present. Thus it
is possible however to define fermionic Green's functions and to calculate
hadronic properties such as the mass spectrum from them.

These lectures have almost studiously avoided discussing particular

techniques for attacking various problems. Rather, the focus here has been on
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elucidating the formalism and setting up several of the problems which
evolve. Various numerical techniques-—-Monte Carle and others--for the study
of lattice theories exist (see, e.g., Creutz,25 Parisi and Wu 26, Callaway and

Rahman27

and references contained therein). There are also analytical
techniques for this study (see, e.g. Wilson,22 Kogut,28 and references
contained therein). All of these methods have their successes and failures.
Yet through their use, we are finally developing an understanding of one of

the most challenging problems in modern physics—-the nonperturbative structure

of quantum field theory.
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