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Abstract:
Greateffort is presentlybeing expendedin thesearchfor elementaryscalar“Higgs” particles. Theseparticleshave yet to be observed.The

primaryjustification for this searchis thetheoreticallyelegantHiggs—Kibblemechanism,in which the interactionsof elementaryscalarsareusedto
generategauge bosonmassesin a quantumfield theory. However,strongevidencesuggeststhat at least a pure t~ scalarfield theory is trivial or
noninteracting.Shouldthis triviality persistin more complicatedsystemssuchasthestandardmodel of theweak interaction, the motivationfor
lookingfor Higgs particleswould beseriouslyundermined.Alternatively, the presenceof gauge andfermion fields canrescuea purescalartheory
from triviality. Phenomenologicalconstraints(suchas aboundedor evenpredictableHiggs mass)may thenbeimplied. In this report theevidence
for triviality in variousfield theoriesis reviewed,and the implicationsfor high energyphysics are discussed.
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1. Introduction and overview

1.1. Prolegomena

The conceptof particlemassgenerationby spontaneoussymmetrybreaking[1.1—1.11]hasbecome
oneof the most important ideasin field theory.Most typically this symmetrybreakingis producedby
the introductionof a scalarfield [1.12—1.17].This new field supposedlyinteractswith itself (via a 44
coupling) in suchafashion as to producea groundstatefor the theory which lacksa symmetryof the
Lagrangian.At the semiclassicallevel,gaugeparticlespropagatingin the asymmetricvacuumappearto
be massive,while the underlyingtheory remainsrenormalizable[1.18—1.25].It is generallyassumed
that no significant changesoccur in the full quantumtheory due to effects such as nonperturbative
renormalization.

Suchan assumptionmaynot becorrecthowever.A largebody of analyticalandnumericalevidence
(reviewedin detailin sections2—4) hasbeenpresentedwhichsuggestsstronglythat atleastpure ~ field
theory is “trivial” or noninteractingin four dimensions.Of course,if the theory doesnot interact,its
(nonexistent) interactionscannot break the symmetry of the vacuum, and gauge particles cannot
acquirea massin this fashion. Should this triviality persist in realistic theoriessuch as the standard
modelof the weak interaction,it is fair to questionthe whole ideaof symmetrybreakingby elementary
scalars.In this casethe standardmodel might be a low-energyeffective model of a more complete
theory (and ipsofacto Higgs particlesmaynot exist); this possibility is consideredin further detail in
section5.

A more interestingscenario may occur in realistic theorieswhere [as in the caseof the 0(N)
gauge—Higgssystemin the large-Nlimit] gaugefields can transforma trivial 4”theory into a nontrivial
model. Although the situationwith the standardmodel is not clear,one realisticpossibilityis that the
Higgs massis boundedor predictable(seesection5).

1.2. Historical perspectives

The concept of triviality had its origins in the physical ideas of Landau, Pomeranchukand
collaborators[1.26—1.40]over thirty years ago. Landau,Abrikosov, and Khalatnikov summedthe
leading-logarithmictermsfor the photonpropagatorD‘~(p2) of quantumelectrodynamicsin the limit
of largemomentumtransferp2. Their result, when written in the “Landau” gauge,is

aRD(p) = _~(g~LP — ?~?~)d(p2aR), (1.1)

where, in this limit, d(p2,aR) hasa powerseriesexpansion

d(p2,a)aR[1+~+(~)+...] (1.2a)
3ir 31T

aR

= 1 — aRtI3lT (1.2b)
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while

t=1n(p2/m2) (1.3)

and aR is the renormalizedfine structureconstant,with m the electronmass(p2 ~‘ m2).
If the resulteq. (1.2b) is takenas exact,the photonpropagatorhasa pole at the momentumscale

p2 = m2 exp(3~r/aR). (1.4)

This pole is of coursethe famous “Feldman—Landaughost” [1.26,1.41] and leadsto a numberof
inconsistencies(e.g. tachyons)in the full theory [1.29, 1.35, 1.36, 1.42] if aR is nonzero.Onemight
thereforejump to the conclusionthat quantumelectrodynamics(QED)is “trivial”, i.e., that thetheory
is inconsistentunlessaR vanishes.

This conclusionis not warrantedsolely on the basis of such flimsy arguments,however, for the
resummationeq. (1.2b) is not justified whenctRtI37r -~ 1. In fact (asis usuallymentionedin elementary
textson quantumfield theory)the “ghost” pole doesnot appearfor momentumscaleslessthanmany
ordersof magnitudegreaterthan the massof the entire known universe,so as a practicalmatterits
consequencesfor QED arenil. Nevertheless,in principle such aninconsistency(if real) is worrisome.

The physical mechanismat work hereis a good deal lessmysterious—itis simply the phenomenonof
chargescreening[1.29,1.30, 1.43]. If abareelectricchargeis placedin thevacuum,it will createvirtual
electron—positronpairs. The chargesof like sign will be repelled, while thoseof opposite sign are
attracted.Eventuallya “cloud” of virtual chargesurroundsthe baretest chargeandreducesthe value
of the chargeseenat largedistances.As probesof higher and higher momentumareapplied, the test
chargeis approachedmorecloselyand the observedchargeseeminglyincreases.Disasteroccursif the
effectivechargeseenby the probe becomesinfinite at a finite momentumscale.

1.3. Triviality and the renormalizationgroup

For a deeperunderstandingof the natureof suchinconsistencies,it is usefulto studythe problemby
means of the renormalizationgroup (see section 3 and refs. [1.44—1.50]).The basic idea of the
renormalizationgroup (which heremeansthe renormalizationgroup of Gell-MannandLow, Callan,
Symanzik and others,rather than the more modernversion due to Wilson [1.51, 1.52]) is that the
momentumscalep. at which the physicalcouplingconstantsof a consistent“renormalizable”theoryare
definedis arbitrary.

Specifically, a renormalizedcouplingconstantAR is definedby a measurementto be performedata
certainmomentumscalep.. The theory itself mustbe equally valid for any choiceof p., providedthat
the physical couplingsare appropriatelyredefined.If p. is rescaledby

p.2_~p.2 et [~(t)]2, (1.5)

thena physically measurablequantity G(p.) in the original theorymust equalits valuein the rescaled
theory, implying an implicit rescalingof AR:

G[A(t), ~i.(t)j= G[AR, ~1. (1.6)
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The dependenceof A(t) upon t can be expressedin terms of a “beta function” /3[A(t)],

i?A(t)/9t= 13[A(t)1 . (1.7)

For quantumelectrodynamics,to lowest order in a [1.44,1.45],

(1.8)

implying that (for smalla at least)

l—aRtI3i~’ (1.9)

wherea(0) aR fixes the initial condition.
This “running coupling” ~(t) is equalto the fine structureconstantevaluatedat squaredmomenta

scaledby et comparedto the squaredstandardmomentaat which aR is defined.The problemof the
“ghost” has againmanifesteditself, for the running coupling appearsto becomeinfinite at a finite
momentumscale.Again, for quantumelectrodynamicstheremaybe no difficulties in the full theory,
for, whena(t) is large, higher-orderterms in f3(~)becomeimportantandthe ghostmight vanish.

1.4. Ghostbusting:The route to a consistenttheory

It would be convenientif the Landaughostcouldbe exorcisedin this fashion by the inclusionof a
few more termsin the betafunction. Sadly this is not the case.The betafunction for QED hasbeen
evaluatedto order i4 [1.53]:

—2 —3 —4
- a a 121a

f3QED(a)=~+
2~QQ __3~+~~~ (1.10)~1T 4~ LOO 7~

andthe appropriatefinger exercisesrapidly revealthe persistenceof the ghostwithin the perturbative
domain.To this day it is not knownwhetherQED is fundamentallyself~consistent.*)

Physicalintuition doesnot fail ushowever.This inconsistencyis justthe problemof chargescreening
mentionedabove. As the chargeis redefinedat higher and higher momentumscales, it appearsto
increasewithout bound. What is needed(heuristically speaking)is a way to ensurethat the physical
chargeat anygiven realizablefinite momentumscaleis itself finite. This criterion can be formulatedin
termsof the beta function of a theory. Considerthe solution of eq. (1.7),

A(s)

. 5~ . (1.11)

The requirementthat A(t) be boundedfor all finite positivet can be satisfiedif f3( A) is continuous
and obeysone of the following two conditions:

*) Actually thisdiscussionis a bit naive.It hasbeenargued[1.82,1.83] that,if a nontrivial fixed pointexists in quantumelectrodynamics,it must

bean infinite-orderzeroof the beta function.See alsoref. [1.84].Recentcalculation suggestthat sucha fixed point may exist [1.86].
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Ghostbustingcondition (a). A(t) approachesa fixed point A~as t—~+co such that (A* — A)1f3(A) is
boundedas A—* A’~[thus f3(A*) = 01.

If f3(A)>0 for A < A~,A approachesA* from below.Thenby assumption(A* — A)’f3(A) is boundedin
this limit by somepositive constant,let us call it c. It follows that t increaseswithout bound as A(t)
approachesA*, i.e., that if AR is finite thenA(t) is finite for all positive t. From eq. (1.11),

A

I dA A~~A 1 -

tJ A*_A ~(A) �__ln(A*_A)+finlte constant,

and thus t—~+~for finite A. The demonstrationis similar if A approachesA* from above.

Ghostbustingcondition (b). A(t) increaseswithoutboundas t—~~ butA - ‘/3(A) is boundedin this limit. *)

The logic inspiring condition(b) is lesscrepuscularwhenthebetafunction /3(x) for the inversecoupling
x A~(with e an arbitrary “small” positive constant)is evaluated,

= Ô(~E) = EAE ~) ~). (1.12)

It is immediatelyseenthat condition(b) simply meansthat f3(~)vanishesatthe fixed pointx* = 0, i.e.,
that an appropriatelydefinedfixed point existsat infinite A. Takentogetherconditions(a) and(b) imply
that a fixed point A’~mustexist at somevalueof A(t) which is approachedas t increaseswithoutbound.
Conditions(a) and (b) areusually summarizedby the statementthat an “ultraviolet” fixed point exists
for the theory.

It is a commonmisapprehensionthat a theory must be “asymptotically free”, that is, possessan
attractiveultraviolet fixed point at A” = 0, in orderto be nontrivial. Theprecedingdiscussionshowsthat
this neednot be the case.All that is a priori necessaryis thatsomefixed point exist; thus asymptotic
freedomis sufficientbut evidentlyunnecessaryin a nontrivial theory.However,the demonstrationof a
nonzerofixed point (A* � 0) maywell requirenonperturbativemethods.Somecandidatetechniquesare
discussedin the following sections,see especiallysection5.

It shouldbe pointedout that the previousdiscussionis somewhatheuristic.For instance,the concept
of a beta function for a trivial theory was usedbut neverexplained.A morecareful adumbrationof
thesefundamental conceptscould begin the analysis by defining a field theory by means of an
ultraviolet cutoff. Next, for a given cutoff, the renormalizedcouplingconstantis calculatedin termsof
the barecoupling. Requirementsof consistency(e.g. the existenceof a vacuumstate in the theory)
constrainthe barecoupling, and ipso facto the renormalizedcoupling. The ultraviolet cutoff is then
removedto infinity; if the limit of theseconstraintsis the requirementthat the couplingconstantbe
zero then the theory is a trivial one. This constructionforms the implied logical foundation of the
precedingdiscussion.A more modern approach(via the Wilson renormalizationgroup) is given in
section3.

*> This type of behaviorcan occurin betafunctionsof supersymmetricYang—Mills theories,asevaluatedby instantonmethods.Seeref. ~1.85].
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1.5. Phenomenologicalimplications of triviality in scalarfield theories

The topic of interestin thisreviewis of coursescalar4~field theory,andsowithout delaywe present

the result for the lowest-orderbetafunction for a single-component(i.e. N = 1) /~‘~theory,

/3(À) = A2 +..., (1.13)
32 IT

for an interactionLagrangedensity

L,(4) = —A~4/4!. (1.14)

(This resultcan be found in manystandardreferences,e.g. refs. [1.49,1.54—1.57].)The solutionof the
renormalizationgroup equationsis essentiallyequivalentto the “parquetsum” of statisticalmechanics
[1.31, 1.33, 1.58, 1.59] (further referencescan be found in ref. [1.60]). This lowest-ordercalculation
producesa Landaughostpole in the running couplingconstantA(t),

A(t)= AR 2 (1.15)
l—3ARt/321T

providedthat AR (the renormalizedcouplingdefinedat tequalto zero) is positive.Thisbasicresultdoes
not changein any lowest-ordercalculationfor multicomponentscalarfields unlessnon-Abeliangauge
fields areincluded(seesection5 andrefs. [1.61—1.63,1.49]). Additionally in the standardformulation
of the theory AR must be positive if the vacuumenergyis boundedfrom below [1.49, 1.54, 1.55]. (In
general,for stability anytheory describedby an interaction

L
1 = A~Jk!~~43IcbkcbI (1.16~

must exhibit the propertythat

(1.17)

for t—~x.)

Of courseall argumentsbasedupon low-ordercalculationsof the betafunction suffer from the same
drawbacks as the correspondingcalculation for QED. Namely, the region of interest [when A(t)
becomeslarge] is clearly outside the domain of small A wherethe lowest-orderresult for the beta
function is valid.

A more stringentargumentfor triviality can be generatedin an N-component0(N) symmetric44
theory [1.64—1.66,1.42, 1.67, 1.68] in the limit of large N. This theory is defined by an interaction
Lagrangedensity

L1(~)= - A (~)2 (1.18)

The betafunction for the theorycan be calculatedby resummingan infinite seriesof diagramsto all
ordersin A but only leading orderin 1/N. The result is [1.65,1.66]
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dA(t) 3A2(t)
dt ~l3o(N)(A)= 32IT2 (1.19)

which is algebraicallythe sameas the lowest-orderresult for the N = 1 theory,eq. (1.13). What is new
hereis the inclusion of all ordersin A in the calculation of the beta function.

The easycriticism appliedto eq. (1.14) [that as theghostpoleis approached,higher-ordertermsin A
becomeimportant] is not applicableto this large-Ncalculation.Moreover, for largeN the locationof
theghostpole implied by eq. (1.19) is independentof N. Onemight thereforeconcludethat AR mustbe
zerofor thetheory to be consistent,i.e., that the 0(N) ~ theory is trivial atleastin the large-Nlimit.

This argumentmay be insufficient, however,becauseit is possiblethat the remainderterm in the
1/Nexpansionis nonuniformin the limit of larget [1.70],andtherebyinvalidatesthe 1/Nexpansion.It
is worth pointing out that the existenceof a Landaughostis not inconsistentwith the developmentof a
renormalizedperturbationseries,for a ghostpoleappearsin the exactlysolubleLee model [1.71—1.74,
1.57]. The point is that in the Leemodel(which lacksantiparticlesandcrossingsymmetry)the “bubble
sum” is exact,and so the ghostappearsin the full theory.

The addition of gaugefields to pure /~theory is a necessityif resultsof practicalinterestto particle
theoristsareto be obtained.Moreover,the coupledgauge—Higgssystemmaybe nontrivialeventhough
the purescalartheory is trivial. Examplesof this phenomenonarediscussedin refs. [1.75, 1.76] and
section5, but it is worthwhile mentioningthat if the above0(N) scalarfield is coupledto an 0(N)
gaugefield, then in the large-Nlimit [1.62, 1.63] the theory is asymptoticallyfree in both A and the
gaugecouplingg (and thuspresumablynontrivial) providedthat

3A~/g~� ~(1 + \/~7~)—~2.72. (1.20)

The ratio eq. (1.20) is a familiar one, since to lowestorder in the loop expansionthe ratio of the
massm~of the “Higgs” scalarto the massmw of theN — 1 massivegaugebosonsin the theory is given
by

2 2(mH/mW) = 3A~/g~. (1.21)

The plausibleassumption(discussedfurther in section5) that this asymptoticallyfree fixed point is the
only onein the theory thenleadsto an upper boundon its “Higgs” mass [1.76]for smallg~,

(mH/mW)2~ ~(1+ \/~7~). (1.22)

An evenmore interestingscenariooccurs [1.77, 1.80] in “eigenvalue” theorieslike the Georgi—
Glashowmodel [1.79, 1.80] of the weak interaction(seealso section 5). In thesetheoriesthereexist
fixed pointswhere,if everycouplingconstantin the theory (including the “Yukawa” or fermionmass
couplings)is chosenprecisely,the theory is asymptoticallyfree, and hencepresumablynontrivial. As
pointedout above,a theory in generalneednot be asymptoticallyfree in order to benontrivial, andthe
requirementthat all its couplingsbe “fine tuned” is not generallyconsideredan attractivepossibility.
Yet if only one ultraviolet fixed point existed in a theory, all particle massesand couplingconstants
would be determinedby consistencyconditions (reminiscentof the “bootstrap” hypothesis[1.81]), a
provocative concept.This possibility also has a natural implementationin termsof the number of
relevantdirectionsat a fixed point in the Wilson renormalizationgroup(seeref. [1.511andsection3).
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Obviouslyall such ideasarehighly speculative,and furtherconsiderationof their validity demands
that accuratenonperturbativemethods for assessingthe triviality or nontriviality of a theory be
developed.It should, however,beclear that the problemof triviality is of morethanacademicinterest,
and a study of its implications maywell lead to resultsof phenomenologicalimport.

2. The precise approach: Rigorous formulation of triviality

It is well to keepin mind that before it can be determinedwhetheror not a given field theory is
trivial, it is first necessaryto define (1) a field theory,and (2) triviality. The attendantterminological
exactitudeis not, however,a necessaryprecursorfor comprehensionof the remainderof this review.
Readersuninterestedin mathematicalformalismthusmaydo well to skip this sectionandcontinueon
to section3. Thosereaderswho, by contrast,arenot disturbedby a preciseapproachto an already
monumentallydifficult problemare invited to continuereadingthis section.The first two subsections
arebrief interludeswhich sketchthe definitions of quantumfield theoriesandtriviality. Following these
is anintroductionto rigorousresultsobtainedlargely by thepowerful random-walkandrandom-current
strategies.Finally a brief review is given of the constructionof nontrivial three-, two-, and one-
dimensionalq5~field theories.

2.1. What is a quantumfield theory?

The subjectof axiomaticquantumfield theory is largelybeyondthe scopeof this review.Thus only a
brief outline of a few major ideasin this subjectappearsbelow. Readersinterestedin furtherdetails
mayfind refs. [2.1—2.4]useful.

A quantumfield theory can be defined by a set of axioms—reasonablepropertiesthat a sensible
theory should possess.One basic set is the Garding—Wightmandefinition of a Minkowski-space
quantumfield theory [2.5] (seealso ref. [2.6]), which can be translatedin termsof vacuumexpectation
values[2.7]. Field-theoreticvacuumexpectationvaluesVI~(alsoknownas Wightmandistributions) can
be definedin termsof operatorsp5(x) acting on a vacuumstate12,

W~(x1,. . . , x~)= (12, cb(x1). . . ~(x~)Q) . (2.1)

This approachleadsto the famousWightmanReconstructionTheorem[2.2,2.5], whichstatesthat, given
a set of W,~obeyingthe Garding—Wightmanaxioms,thereexistsan essentiallyuniquetheory for which
the W~arethe Wightmandistributions.

The Wightmanreconstructiontheoremis basedupon a Minkowski-spaceformulation of quantum
field theory. However, much of the work pertinent to triviality is formulatedin terms of Euclidean
quantumfield theory. Euclidean-spacemethodswere first discussedin terms of perturbationtheory
[2.8—2.10].Despiteearlywork on Euclideanfield theories[2.11,2.12, 2.7] progressin this directionwas
largely initiated by Symanzik [2.13, 2.14] and by Nelson [2.15, 2.16], which inspired subsequent
theoremsby OsterwalderandSchrader[2.17].(Although ref. [2.17]is correctin its generaloutlook, the
readershouldbe warnedthat a technicalerrorexists in the last lemma;seerefs. [2.18]and [2.1].)The
point of the Osterwalder—Schraderapproachis that a unique Garding—Wightman theory can be
reconstructedgiven anappropriatesetof Euclideanregion“Green’sfunctions” (morecommonlycalled
Schwingerfunctions).These ideaswere instrumental in developinga rigorous definition of quantum
field theory basedupon Euclidean-spacepathintegrals.
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Path integralswere first used“formally” by Feynman[2.20].Subsequently[2.21] Kac developed
rigorousaspectsof the theory basedupon considerationsof the Ornstein—Uhlenbeckvelocity process,
which is in turn basedupon the fundamentalwork of Wiener[2.22]. It remainedfor Nelsonto show
[2.15]that not only can onedevelopapathintegralformalismover thefree Minkowski field but that it
is a manifestly Euclidean-invariantpath integral (seealso ref. [2.24]). Euclidean-spacepath integrals
also allow a naturalconnectionto be madewith statisticalmechanicsand the renormalizationgroup
(seesection3).

2.2. Whatdoes “triviality” mean?

As is discussedbelow, muchof the formal work done on triviality involvesstatementsthat a given
theory is a trivial “generalizedfree field” if certainpreconditionsare met. The conceptof a generalized
free field was introducedin ref. [2.24],andcan be expressed[2.1] in termsof a factorizationproperty
describedbelow.

Considerthe structureof W2(x,y) = KQ, 4(x)cb(y)ul).By translationinvariance,W2 can bewritten
as a function ~+ of (x — y)

W2(x,y) = ~i~(x— y). (2.2)

From the Garding—Wightmanaxioms, it follows that ~÷ (x) hasa Kallen—Lehmannrepresentation
[2.1, 2.25],

&(x)= J ~~(x;m
2)dp(m2), (2.3)

m2>O

where

f ~3 ip~,x~’
2 i up e 2 2 1/2

~+(x;m )~j~ 2i~ E~(p+m ) , (2.4)

andp(m2) is a polynomially bounded(positive) measure.
It is useful in the definition of a generalizedfree field to rely upon the notation [2.26]

[x
1,. . . , xj = 0 if n is odd, (2.5a)

[x,,. . . , x~] ~ [xi, x1]. . . [xi, x1] , if n is even, (2.5b)
pairs

where[x, y] denotesa given distributionin two variables,andthe sum in eqs. (2.5b) is over all waysof
writing {1,...,2n} as ~ with ~ ~ Then [2.1] it
follows that if [x, y] = & ( y — x) possessespropertiesimplied by the Garding—Wightmanaxioms, then
a set of W~defined by

W~(x,.. . , x~)= [x1,. . . , x~] (2.6)

obeystheseaxiomsandthe associatedfield theory is ageneralizedfree field, i.e., it is a trivial theory.
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In the specialcasethatp(m2)= 5(m2 — mt), the associatedtheory is calledafreefield ofmassm
0. The

Schwingerfunctionsfor a free field areeasyto find [2.1],

S1(y;m~)= J (2IT)2 k2e+rn~= ~- K~(m0~y~) (2.7)

and

S~(y1,..., y~)=[y1,. . . , yj, (2.8)

whereK0 is the associatedBesselfunction and

[x, y]=S2(xy;m~). (2.9)

Discussionsof free fields in the path integral formalism can be found in the standardreviews [2.19,
2.20, 2.1, 2.24].

2.3. Randomwalks and triviality

Manyimportantquestionsaboutthe triviality of 4’ field theoriesaremost naturally answeredwhen
the problemis formulatedin termsof randomwalks. This modusoperandioriginatedin the germinal
work of Symanzik [2.14];earlierpursuitsof 4~triviality arereviewedin refs. [1.60]and [2.3].

Random-walkapproachesand the relatedrandom-currentideasare anintegralpart of proofs of the
triviality of c1~field theory in five and moredimensions[2.27—2.29]andin obtainingpartial resultsin
four dimensions[2.27,2.28]. A heuristicsummaryof the latter partial results(reviewedbelow) is that
one- andtwo-componentpure4~field theoriesin d = 4, constructedas a scalinglimit of ferromagnetic
lattice field theories,are trivial unlessthey are asymptoticallyfree. Moreover [2.30],if thesetheories
areto benontrivial, meanfield theory must beexact in thesemodels.Obviously,if perturbationtheory
is anykind of a guideto thesemodels,theyarenot asymptoticallyfree (andlogarithmiccorrectionsto
the meanfield pictureexist), but this hasnot beeneliminatedrigorouslyas a logical possibility.Further
resultsof this randomwalk formulationcanbe found in refs. [2.30—2.37](seealso the reviews in refs.
[2.38—2.42]).

Thereformulation[2.13]of /~lfield theoriesas randomwalks is astriking innovation.Someintuition
as to howthis comesabout can be gleaned[2.27,2.29,2.40] from a simplified specialcaseof the above
calculations.Considera scalarfield theory definedupon ad-dimensionalEuclideanhypercubiclattice
Z~with lattice spacinga. The fields 4~obey a distribution law

dp.(~)= Z
1 ~ fT d4~, (2.lOa)

whereZ is the standardpartition functionand

S(~) ‘/3 ~ (çb
1 — ~)2 + ~ (~m~2+ ~A0~). (2.lOb)

(zj)

Here, (ii) refers to a sumover all nearest-neighborpairs, each takenonce. Equation(2.lOb) can be
rewritten
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~ ~A0t~], H(4)~+ ~, 4yb1, (2.lla)
(ij)

so that

dp.(4)= Z
1 e~”~ fJ dA(q~~), (2.llb)

~ + ~A
0~]. (2.llc)

The field strengthrenormalizationis thusgiven by ~(a) /3(a)a
2~’.As the continuum (a —~ 0) limit is

approached,the bareconstants/3(a), m
0(a),andA0(a) arevariedso as to obtainrenormalizedphysical

parametersAR andm~which arefinite.
In the free-field limit (A0 0), the Schwingerfunction for the theory eq. (2.11) is given by

S~(x,y)y)o=Jdp.o((x)~(y)=(_/34+m~Y’, (2.12)

which is definedupon Z~in termsof a finite-differenceLaplacian

—/34+ m~ (2d/3+ m~)I— J/3. (2.13)

HereI is the identitymatrix andthe elementsJ.~of thematrix Jareoneif x andy arenearestneighbors
and arezero otherwise.Then S0(x,y) can be expandedin a Neumannseriesin J,

S0(x,y) = 13fl+l(jfl) (2.14a)

3~/3(2d/3+m~)’. (2.14b)

Considernext a randomwalk w of length w . This walk can be thoughtof as beinggeneratedby a
particle which makesstepsof length one randomlyin all 2d directionsemanatingfrom a given lattice
site. Then S0(x,y) can be expressedin termsof a sum over all of theseBrownianwalks,

S0(x, y) = f3’~ ~. (2.15)

If n(w) is the total numberof visits of a given walk w to somesite j, then

S0(x, y) = f3
1 ~ fT ~n~) (2.16)

w: X-.y JEzd

Note that the critical value of /3 (when the lattice spacinga vanishes)occurswhen

(I3criti” =2d, (2.17)

which is the numberof directionsthata particle at a given site can jump.
The more generalcasewith A

0 nonvanishingcan also be treatedby random-walkmethods.This
reformulationleadsto a natural interpretationof triviality in terms of the intersectionprobability of
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random walks. It also leads to the above-mentionedtheoremson 44 triviality in four and more
dimensions.Define

8(s)ds ifn=0,
dp~(s)~~ 0’ ~d =1 2 3 (2.18)

~~5j 5 n , , ,...,

and

dp,,,(t)= LI dpfl(~)(tj). (2.19)

Note that t1 can be thoughtof as the total amountof “time” that the randomwalk w spendsat site j
[whereit makesn1(w) visits]. Define a t-dependentpartition function

Z(t) Je~’~LI g(~+ 2t1) d~1, (2.20a)

with [cf. eq. (2.llc)]

g(~
2)~dA(~)Id~. (2.20b)

Then

~ /3IwIJz(t)dp(t), (2.21a)
w: x—~y

where

z(t) Z(t) IZ(0)>0. (2.21b)

In the noninteractingcaseA
0 = 0,

z0(t)= LI exp[—(2d/3 + m~)t1], (2.22)

so that [cf. eq. (2.12)]

S0(x, y) = = (—/34+ m~)~’. (2.23)

The foregoing explication makes it clear that the random-walk model correspondingto the
interacting (A0� 0) theoryhasthe samecombinatoricstructureas the free-field limit. Whatdefinesa
particularclass of walks arethe weightsz(t) associatedwith eachrandomwalk when asum over walks
is taken.

It is easyto seethat virtually anyfield-theoreticquantity can be expressedin termsof randomwalks.
For instance,considerthe connectedfour-point “Ursell” function definedby

u~~~(x,,x2,x3,x4)~(4(x1)t~(x2)4~(x3)~(x4))—~ (4(P,)~(P2))(~~(P3)~(P4)) , (2.24)
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wherethe sum is over all pairings,P, of {1, 2,3, 4}. In the random-walkformalismthis can be written

[2.27,2.29]

x4) = ~/3~1~2I Jdp~(t’)dp0jt
2) [z(t’ + t2) — z(t1)z(t2)], (2.25)

~P W

1W2

where ~W2 rangesover all walks w1 and w2 with

w,: x(P1)—s’x(P2), w2: x(P3)—.x(P4)

The renormalizedquarticcouplingAR can be definedin terms of the four-point function by

—(4) —2 dAR—u X (mR) , (2.26)

where

J ddx2 ddx3 ddx4 u~
4~(x,,x

2, x3, x4) , (2.27)

while the susceptibilityx is given by

X_JddxSA(0,x), (2.28)

and

1
mR llm — — ln SA(0, x) (2.29)

Ixl—~ x

definesthe renormalizedmassm~.
An upperboundon the four-point function (essentialfor the following discussionon triviality) can

now be constructed.Define

~(t) fT eA~t~z(t). (2.30)

If ln ~(t’ + t
2) is written as anintegralover derivativesin t’ andt2 andGinibre’s inequality [2.43]is used

to estimatethe integrand,it can be shownthat [2.27]

+ t
2) � ~(t1)i(t2) . (2.31)

Thus it follows that (recall that u~
4~is negative)

~ . . , x
4) � ~/31w1H1W21 Jdp~(t

1)z(t’) dp~(t2)z(t2)[exp(_2A
0~ — i]. (2.32)

P “1’~’2

Note that if j is not containedwithin the randomwalk w,, then t’, vanishes.Thus the right-handside
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vanishesunlessa randomwalk w~intersectsa randomwalk w2 with nonvanishingprobability. This is a
major resultof the formalism.The renormalizedquarticcoupling can be boundedfrom above:

AR ~3P~, (2.33)

whereP5,,~is the averageintersectionprobability for two “field-theoretic” walksw~andw2 with weights
z(w1) and z(w2) as definedabove.Moreover, it can be shown that (see, e.g., ref. [2.40])

0� (~(x)t~(y))<cf3’~x— y~
2_d, (2.34)

which says,heuristically, that the Hausdorffdimensionof thesefield-theoreticwalks is at most two.
Thus it may be intuited that P

5,,~ vanishesin more than four dimensions.The motivation for this
noumenonis the fact that walks of Hausdorifdimensiontwo fill a plane(heuristicallyspeaking).Thus
sincetwo planesin generaldo not intersectin morethanfour dimensions,neitherwill two suchrandom
walks. The ordinaryrandomwalk (correspondingto a free field theory) hasHausdorifdimensiontwo,
for instance,and is known to be nonintersectingin d >4 [2.44, 2.30, 2.31].

Another pictorial example of some utility is the limit obtainedby analytic continuation of an
N-component~‘ field theory to N = 0. It is well known(see,e.g., ref. [2.45])thatthis limit of pure
field theory is the Edwardsmodel [2.46] of the self-suppressingrandomwalk, which becomesthe
self-avoidingwalk (SAW) in the nonlinearsigma modellimit of largeA0. Numericalsimulationsof this
walk [2.30,2.47] can be performedwith remarkableprecision.The critical functionsof this theorycan
thus be measuredaccurately;the results areconsistentwith the ideathat this limit model is trivial in
four and more dimensions.In particular, thesesimulationspredict logarithmicviolationsof mean-field
scaling for the renormalizedmass.The significanceof scaling violations is further elaboratedupon
below.

It is thereforenot surprisingthatthe aboveinequality eq. (2.33)canbe used[2.27,2.28] to showthat
the connectedfour-point functionvanishesin fiveandmoredimensionsfor one-andtwo-component4~
field theories.In fact, inequalitiesof this form can be generatedand usedto showthat all connected
2n-pointWightmandistributionsvanishin d >4 (for n = 2, 3,. . .). Thus thesetheoriesaregeneralized
free fields (and presumablyarealso free fields).

It also follows [2.27,2.28] that in four dimensionsone- and two-component~ field theoriesare
trivial, i.e., that at noncoincidingarguments

(4)

hmu (x1,x2,x3,x4)=0, (2.35)
provided that in this limit of vanishinglattice spacinga the field strengthrenormalizationvanishes:

1im~(a)=0. (2.36)

If eq. (2.36) is not satisfied(i.e., if dim[4.] = 1) the limiting theory cannotbebothEuclideanandscale
invariant unless it is a free field theory [2.48].Thus if ~ field theory (with N = 1 or 2) is actually
nontrivial in four dimensions,it must thenbe asymptoticallyfree,in sharpcontrastto the expectations
generatedby a perturbativeevaluationof the beta function. In otherwords, the beta functionhasno
nontrivial zeros (seesection1).

More stringent results have also been obtainedwithin this framework. It has been shown that
[2.30, 2.31]
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0 ~ AR ~ const./32 . (mR)” 8x/o/3. (2.37)

In four dimensions,when ~ (=y~,the anomalousdimensionof q5) vanishes,eq. (2.37) implies that AR
vanishesas the critical surfaceis approachedunlessmeanfield theory is exact,i.e., unless,as /3 —~

from below,

mR—(/3C/3), x—(/3~—/3Y~ (2.38)

with ii = ~and y = 1. Correctionsto eq. (3.38)can be at most logarithmic [2.30,2.35]; suchlogarithmic
corrections to scaling are in fact predictedby the renormalizationgroup (see section 3 and refs.
[2.49—2.51]),and are also suggestedby the above-mentionednumerical data for the self-avoiding
randomwalk. Moreover,if theselogarithmiccorrectionsarepresent,thenthereis no broken-symmetry
phaseof the theory [2.40,2.31].

2.4. Nontriviality of 4~field theory whend <4

For the sakeof completeness,a few referenceson the constructionof a nontrivial ç~field theory in
threeand two dimensionsare given. The first and most important stepsin the constructionof the
three-dimensionalmodelwere takenby Glimm andJaffe [2.52].Later work in this direction includes
refs. [2.53]. Other approachesmay be loosely categorizedas the “Italian” method[2.54],Balaban’s
method[2.55], the Battle—Federbushmethod[2.56],and the Brydges—Frohlich—Sokalmethod[2.31].
This last method is particularlysimple, anddoesnot makeuseof the “phasecell analysis”,which the
otherschemesare basedupon (seealso section 3). Severalclever (if incomplete)argumentsare also
given in ref. [1.60].

It shouldbe pointedout that the constructionof 4~field theory in three dimensionsis a problemof
extraordinarydifficulty, sinceinfinite massandvacuumenergydivergencesappear.In two dimensions,
by contrast,thesedivergencescan be eliminatedby the simple expedientof Wick ordering.Traditional
constructionsof two-dimensional4~field theory can be found in refs. [2.1, 2.3, 2.29], see also refs.
[2.31] and [1.60].

One-dimensionaltb” field theory hasalso beenconstructed,see ref. [2.57].

3. The modern approach: Triviality and the renormalization group

3.1. Motivation

The casualreadermaywell believeby this point that the studyof triviality in quantumfield theories
is an esotericexercisein formal mathematics.In this sectionthe fundamentalnotions of triviality are
recastin termsof the tenetsof the renormalizationgroup,with the hopeof rescuingtriviality from this
innocuousdesuetude.Many of the conceptsof triviality arein fact mostnaturally expressedwithin this
framework. Moreover, the renormalizationgroup study of triviality can be accomplishedwith some
efficacy by numericalanalysesof lattice field theories.

The renormalizationgroupis moreof a way of thinking abouta problemthana specific technique.
Indeed, the sobriquet “renormalization group” is presently applied to a number of ideas and
calculationalmethodswhich can appearentirelydisjoint to theuninitiated.The majorthemeof all such
approachesis the idea that in a systemwith a largeor (as in the caseof a quantumfield theory) an
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infinite numberof degreesof freedom,the physicalpropertiesof thissystemcan be equatedto thoseof
a systemwith fewer degreesof freedom but with different interactions.This idea suggeststhat the
original theorycan be successivelymappedonto a sequenceof theories,eachwith fewer degreesof
freedomthan its predecessor,and eachcharacterizedby a new setof couplingconstants.The implied
sequenceof sets of coupling constantsdefines a renormalizationgroup “flow” or trajectory as the
number(or numberdensity) of degreesof freedomis steadilyreduced.Insteadof solving the system
directly, its propertiesare revealedfrom an analysisof theseflows. In the caseof a quantumfield
theory,useful quantitiessuch as the numberof independentrenormalizedparametersin the theoryor
the anomalousdimensionsof various operatorscan be deducedin this fashion. Moreover, something
calculatedin one regionin thespaceof couplingconstants(e.g.,whereperturbationtheoryis valid) can
be transportedto anotherregion of couplingconstantsby integratingthe resultalonga renormalization
group trajectory. (Such is the origin of “renormalizationgroupimprovedperturbationtheory”).

As discussedin section 1, the original (or “historical”) renormalizationgroup [1.44—1.50]hadits
origins in the fact that in a “sensible”quantumfield theory,measurablequantitiescan be defined(in
termsof othermeasurablequantities)in a fashionwhich is independentof the renormalizationpointp..
This renormalizationgroupformalism is quite familiar to high-energyphysicists,and is thusdiscussed
belowonly in referenceto more contemporaryapproaches.Readersinterestedin further detailsmay
enjoy perusingrefs. [1.49], [1.50],and [3.1].

The more modernrenormalizationgroupdue primarily to Wilson [1.51,1.52] drawsheavily upon
theseideas. This renormalizationgroup has largely been applied in statistical mechanics,though
recentlyit hascometo be useful in quantumfield theoriesdefinedupon a spacetimelattice (seeref.
[3.23]and section5). In this approach,no true “renormalized”couplingsareevercalculated.Instead,
the Wilson renormalizationprogram is applied directly to the bare cutoff field theory. The high-
momentumcomponentsof thepath integralareintegratedout, andthe cutoff A is reduced.The action
for the theory changesits functional form under this operation, and in generalan infinite set of
couplingsis generated.This is in distinct contrastto the historical renormalizationgroup, wherethe
numberof couplingsdoesnot changeas the renormalizationpoint p. is varied. Neverthelessthereare
pointsof contactbetweenthe two approaches.Oneexampleis the fact that the numberof directionsof
instability at a fixed point in the Wilson approachequalsthe numberof independentrenormalized
couplingsfor the theory used in the historical approach.The applicationof theseideasto 4 ‘~ field
theory is discussedbelow. As the Wilson approachis the most useful in the study of triviality, it is
discussedfirst, and thenits relationsto otherapproachesare explored.

3.2. The Wilsonrenormalizationgroup

3.2.1. Conceptual foundations
It is easiestto begin with the formulationof a single-component4”theory on a spacetimelattice.

Considerfirst the theory in continuousd-dimensionalEuclideanspace,whereit can be definedby the
partition function (or vacuum-to-vacuumtransitionamplitude)

z = fD~exp(—S)= ~=~(oI ~ (3.la)

where

S=Jddx[~(~)2+ ~m~2 + A~4], (3.lb)
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with 4 = 4(x). One lattice formulation of the model is given by the associationof a canonically
dimensionlessfield S~with pointsn in a hypercubiclattice. The discreteapproximations

— Sr), Jddx~ad~, (3.2a)

alongwith the redefinitionof the theory in termsof dimensionlesscouplingsu and r,

A a2~”4~u, m~ a2r (3.2b)

(wherea is thelatticespacingand12 is a unit vector in the direction p.) canbe applied to the actioneq.
(3.lb) to yield

~Iattice = ~ ~ — 5)2 + ~ (~rS~+ uS~)

=—>...SflSfl~+u~(S~—K)2+constant, (3.3)

where K = —r/4u. In the limit of large A, the theory definedby eq. (3.3) is (modulo a rescaling
5,, —~ “./k o~,,) an Ising model, definedby the partition function

Zising = LI (J do-,, 6(r~— 1)) exp(K ~

~JDuexp(_Sising), (3.4)

whosecorrelationfunctionsare definedby

= Z’ JDo- (o-~u,,)exp(~S,sj,,g). (3.5)

Note that the (a-) arerestrictedto the values±1. The asymptoticbehaviorof 1, for large In I is thought
to be

F,, —exp[—InII~(K)], (3.6)

where~(K) is a dimensionless“correlationlength”. It is convenientto definea renormalizedmassfor
the scalarparticlesOf the theory in termsof ~(K),

m~= [a~(K)]~, (3.7)

whereuponit becomesevidentthat if a continuumlimit (a —~ 0) of the theory with particlesof finite
mass exists for some value K = K~, then 4(K~) must be infinite. This requirementof a divergent
dimensionlesscorrelationlengthimplies thata continuumlimit of a lattice theory mustoccurat a phase
transitionof second(or higher) order. The analysisof a continuumlimit of a lattice theory is thusa
study of critical phenomena,for which Wilson’s renormalizationgroupwas designed.
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A brilliant qualitativepicture of the behaviorof the Ising modelat a critical point was suggestedby
Kadanoff[3.3]. This ideadescribesthebehaviorof a systemwith largecorrelationlength in termsof the
behavior of a systemwith small correlation length. (The following discussionis actually [1.51] a
rephrasingof Kadanoff’s ideas.)Considerfor simplicity a planelattice of Ising spins (fig. 3.1) divided
into blocksof four spinseach.Neara critical point, ~is very large,so thefour Ising spinsin ablock are
very well correlated.In particular,the four spinsin ablock actmuch like a single spin—all four spins
will be either up or down. The original lattice can thus be replacedby an effectivelattice wherethe
interactionsare betweenblocks of spins ratherthanbetweenthe spins themselves.The correlation
length for the block systemis half the correlationlengthof the original (or “site”) system.This process
of blocking can be repeatedindefinitely until a systemwith 4 -~ 1 is reached.

Supposethat in the original systemK is a certainvalueK0, andthe blockedsystemcan be described
with a nearest-neighboractionwith K = K1. Sucha truncationof the blockedactionis at bestasevere
and dubiousapproximation.However, it is easy(at leastin principle) to keeptrack of the arbitrarily
largenumberof otherparameters,and so in eqs. (3.8) theyareneglected.Thecorrelationlength in the
original andblockedsystemare thenrelatedby

~(K1)= ~(K0), (3.8a)

wherethe “truncation” assumptions

K1—f(K0) (3.8b)

and

K,,=f(K,,_1) (3.8c)

are made,so that (blocking n times)

= 2”~(K0). (3.8d)

The fact that at K = K~thereis asecond-orderphasetransitionwith ~(K~)infinite meansthat

f(K~) = K~. (3.9)

• •I• •

• .~• • . S
_I_____ _____

• .~• • S S

• .1. •

(a) (b)

Fig. 3.1. Schematicdiagramdisplayingthe conceptof interactionsbetweenspinsbeingequivalentto interactionsamongblocksof spinsat acritical
point. (a) The original lattice, (b) the block lattice.
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In other words, K~is a fixedpoint of the transformation eq. (3.8c). The study of such fixed points is at
the heartof the renormalizationgroupprogram.When K is near K~,f(K) can be expandedin aTaylor
series,

f(K) — K~= A(K — K~), (3.10)

where A=df(K)/dK at K~. Since

~(K)oe(K—K~)_r (3.11)

for K nearK~, then [1.51]in this limit

2— ~[f(K)] (f(K)—K~\’~

— ~(K) \ K—Ku j (3.12)

From eq. (3.10) it follows that

,.‘=ln2IlnA. (3.13)

This critical exponentii is relatedto the anomalousdimension of the operator~2 in the original
4~theory,as is discussedbelow. Thus from the recursionrelationf(K) it is possibleto determinethe
critical pointK~of the theory aswell asthe anomalousdimensionsof variousoperatorsin the associated
field theory.The importantissueto addressis thereforehow the functionf(K) can be calculated,i.e.,
how the block action governingthe block systemis determinedfrom the site system.Note that this
functioncan producenonanalyticbehaviorin ~(K) evenif f(K) is analyticnearK~.

The above heuristicschemeis now exploredin detail through several examples.These examples
allow an explication of the Wilson approachto renormalization,which allows one to calculatethe
renormalizationgroup trajectories[defined above for a single coupling K, by the function f(K)].
Although the existenceof suchtrajectoriesis implicit within Kadanoff’sideas,it remainedfor Wilson to
developthis calculationalscheme.

3.2.2. Application to 4~field theory: Thegaussianfixedpoint
Considerthe n-component4~theorydefinedby the action

S = ddx [~m~ ~) + A~(~~)2 + ~c(~ ~] (3.14a)

= ~ (m~+ ck2)I~~kI2+ AOLd ~ ~i,k~,k’~j,k”~j,-(k+k+k”)’ (3.14b)
i,k k.k’,k”,ij

wherei andj aretheindices of the componentsof ~k’ theFourier transformationof cb(x). All momenta
arerestrictedto magnitudeslessthana cutoff A (i.e., 1k I <A). Here, L is the lengthof a side of the
“box” in which the theory is defined(the infrared cutoff).

The renormalizationgroupanalysisperformedbelow (following ref. [3.6]) on eqs. (3.14) is defined
for an arbitraryrescalingfactor b > 1. Both the scalar fields ç~and the spacetime in which the theoryis
embeddedare continuous.The blocking procedurecan be summarizedin two steps.
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Step 1 (Kadanoff transformation):The components4q for A/b < qI <A areintegratedout. This is
essentiallythe sameprocedureas dividing an Ising systeminto blocksandaveragingthe site spinsover
a block.

Step 2 (Wilson definition of block fields): The block fields 4~aredefinedin termsof the remaining
original fields {cbk: IkI <A/b} by

= (~b~’2)4~,~ (3.15a)

so that0< 1k’ I <A. In orderthat the transformationcan berepeatedad infinitum, it is necessarythat Pb
be a powerof b. It is traditional to define an exponent~ via

Pb’~ b’’~2. (3.15b)

As is shownbelow, the exponent~ is equal~ the anomalousdimension74, of the field 4’.
Two alternateexplanationsof the rescalingfactor b~”2can be advanced,dependingupon the

backgroundof the reader.The moreglib explanationcan be offered to the particle theorist: As the
cutoff is reduced,the field strengthrenormalizationchanges.(In fact it is in general impossibleto
obtain a fixed point of the renormalizationgrouptransformationwithout suchrescaling.)

Theexplanationfor the condensedmattertheorist is moreintuitive. Recallthe heuristicIsing model
studyof renormalizationgiven above.If the only allowedconfigurationsarethosein whichall site spins
in a block arealigned,thenthe sumof the four spinsin a block takeson the values±4.Rescalingby a
factor of four is neededto ensure that the blocked system is also an Ising model, so that the
transformationcan be repeatedand fixed points obtained.(Actually configurationsin which all site
spinsin a block arenot alignedareimportant,soa nonlinearblocking transformationis needed[3.5].)

The two stepsdefining the block renormalizedaction5’ can be combinedto give

exp(—S’ — ALd) = (f D~e~) i-~/2 (3.16a)
4,k~’ “~‘bk

where

JD~J LI LId~, (3.16b)
fl/b<Iq~-(A

and S’ hasbeendefinedso as to include no additive constant.
It is simpler to consider first the casewith A equal to zero. The requiredintegralsare simple

gaussians,and give the result

S’=~ ~ b2”(ck2+m2)I~~bkI2
ilk <fl/b

= ~ b~(ck’2 + m2b2)I~~k,I2, (3.17a)
2 lk’l<A

d 1 V~ / 21T ‘\
AL = —~ L nln~ 2 2). (3.17b)

~ A/b<~qI<fl m + cq
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Equation(3.17a) is the sameas eq. (3.14b), but with new parameters

m2~b2~ (m’)2, (3.18a)

cb”~~c’. (3.18b)

The renormalizationgrouptransformationRb can be written symbolically

R~p.p.’ (3.19a)

as an abbreviationfor

(b~ b~)(C)(~’Y (3.19b)

Fixed pointsp.~of Rb aredefinedby

R~p.*p.*. (3.20)

The so-called“gaussian” fixed point of interestto field theoristsoccursin eq. (3.19b)when r,~= 0,

p.~= (~). (3.21)

By referringbackto eq. (3.14), it can be seenthat this fixed point correspondsto a freefield theory.
When ij = 2 anotherfixed point appearsin the theory if m2 >0,

m2>0: p.~=(~). (3.22a)

If m2 is negative,an (infinitesimal)quarticcouplingconstantcan beusedto stabilizethe theory,anda
third fixed point appears,

m2<0: p.~=(’~2). (3.22b)

Thethreefixed pointsp.~, p. ~, andp.~ havevery different interpretations.The fixed point p. ~is the
critical fixed point of the theory (correspondingto the ferromagneticphasetransitionof the associated
Ising model) and is the only fixed point of field-theoreticsignificance.The fixed point p.~ describesa
situationin which eachblock field hasa gaussiandistributionandis independentof all otherblocks. It
is analogousto thehigh-temperaturelimit of the Ising model.The fixed pointp.~ (correspondingto the
low-temperaturelimit of the Ising model) describesa systemin which eachblock field takesthe same
large value. Neitherp.~nor p.~

0.describesa systemwith an infinite correlationlength. Thus, by the
discussionfollowing eq. (3.7), they are unimportantfor field theory and are not consideredfurther.

How does the correlationlength~ scaleunderthe renormalizationgroup transformation?Definea
correlationfunction G~

2~(x)by

G~21(x)~(4’(x)4’(0)) — (4’(x))(4’(0)) , (3.23a)
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with

o ~= f D4’ e_SO(x) (3.23b)
~ (x) — JD4’e5

An oft-useddefinition of the dimensionlesscorrelationlength ~ is then

= ~2 f x2G~2~(x) d”x (3.24)
5G~2~(x)d’tx

i.e., ~ is an “effective rangeof correlation”. For S given by eqs. (3.14)with A set to zero,

~ (~2— m*2)~’ = (m2)”2 (3.25a)

(sincem* equalszero in this case)and at the gaussianfixed point p.~,

~‘(R~p.)o’ (rn’2 — m*2)~~= (m’2)~2 = ~(p.)/b. (3.25b)

By following the argumentleading to eq. (3.13), it can be seenthat

lnb 1
(3.26)

ln(b2~) 2

Fromeqs. (3.15) and(3.23) it follows that the Fourier transformG~2~(k)of G~2~(x)variesunderthe
renormalizationgroup transformationlike

G~2~(k,p.) = b2~G~2~(bk,Rap.), (3.27)

wherethe dependenceuponthe parametersp. hasbeenmadeexplicit. Sinceeq. (3.27) holdsfor any b,
it is permissibleto chooseb = k’, so that at a fixed point (where~ is infinite),

G~2~(k,p.*) = k2 G~2~(1,p.*) , (3.28)

so that the anomalousdimension74, of the field 4’ is given by

74=7). (3.29a)

Moreover,as is shownbelow[seeeq. (3.12)], the anomalousdimensionof theoperator~ 2 is given by

(3.29b)

andthusvanishesat p.~.Sincethe anomalousdimension74, is alsozero at the gaussianfixed point, the
renormalizationgroup analysisis consistentwith the statementthat this point describesa free field
theory. In this particularcase,the resultis obviousby inspectionof eqs.(3.14). Neverthelessit is useful
to demonstratethe formalismin preparationfor study of more complicatedsystems.
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In the most general case,there are an infinite numberof interactions,and p. is a vector with an
infinite numberof components.The critical surfaceof a fixed point p. * (wherethe correlationlength is
infinite, andhencea renormalizedquantumfield theory can exist) is definedas the setof pointsp.,~such
that

limR~p.~=p.*. (3.30)

If p. is nearp. ~ it makessenseto expand

p.=p.*+~p. (3.31)

where~p.is “small”. Then

(3.32)

where(assumingthat the renormalizationgroup transformationis nonsingular)

(R~),,~ (dp.,’,/r9p.~)~. (3.33)

is a linear operator. If R~haseigenvectorsv.correspondingto eigenvaluese1(b),then,since

DLDL —

1~b1~bVJ— Itbb.VJ

it follows that

e.(b)e1(b’)= e(bb’). (3.35)

and hence

e.(b)= br’, (3.36)

wherey. is independentof b.
The vectors6p. and 8p.’ can be expandedin termsof the

~p.~t1v1, (3.37a)

= ~ t~v), (3.37b)

= b~’it~. (3.37c)

Eachof the t1 is by assumption a smooth function of the couplingsin the theory. It is alsoclearthat
for eachof the y1 that arepositive (andthusdefinewhat arecommonlyknownas “relevant” directions
at the fixed point) the correspondingt. must vanish on the critical surface.The t. correspondingto
negativeeigenvaluesy. define “irrelevant” interactions,and in generaldo not vanish on the critical
surface. Finally, the y1 which vanish define “marginal” directions. These marginal eigenvaluesare
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somethingof a nuisance,andoften meanthata morecarefulanalysisof the problem(i.e., theinclusion
of moretermsin a powerseries)is needed.Theycan also lead to the presenceof logarithmicviolations
of scalingrelationslike eq. (3.28) (seesection5.2).

The aboveconceptscan be illustratedby a perturbativeanalysisin A nearthe fixed point p.~.The
result for smallA is [3.4, 1.51, 3.6—3.8]

A’ = b4_dA,

(rn’)2 = b2[m2 + A(~n+ 1)(n~/n)(1— b2_d)]

c’=c, (3.38)

where

d—2n A
n~=— Kd d—2 (3.39a)

l—d —d/2
L IT

Kd= rf1~s (3.39b)

ifd=4. (3.39c)

Here, n is the numberof componentsof the 4’4 theoryand Kd is the surfaceareaof a unit spherein
d-dimensionalspacedivided by (2IT)2.

The matrix R~is thengiven by

b2 (b2—b4’~)B0
R~= 0 b4” 0 , (3.40a)

0 0 1

where(nearp.~)

2m m
A’ =R~ A , (3.40b)
C’ C

and

B (~n+ 1)n~/n. (3.40c)

The eigenvaluesof R~are b2, b4_d, and 1. The eigenvectorsare

v,=~0J, v
2= 1 ), u3=t0), (3.41)

\0I 0! \1/

andcorrespondto exponents

y,=1/v=2, y2=4—d, y3=0 (3.42)
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In the neighborhoodof the fixed point p.~,the vectorp. of couplingconstantsis given by [seeeqs.
(3.37)]

— *~f ~L# .Lfp. — p.0 ~ ~2~’2 L3V3~

with

(m2)* /~J\
p.~ A* zI.0J, (3.43b)

c* \c/

t1=m
2+BA, t

2+A, t3=c (3.43c)

The equationfor the critical surface~ is simply t1 = 0. If the spacetimedimensionalityd of the
systemis greaterthanfour, the parameterA is irrelevantalongthiscritical surface.(Notethat, sincethe
anomalousdimensions74, and 74,2 vanish for any infinite-cutoff theorydefinedon this surface,such a
theorymustbe trivial.) Theserenormalizationgroupflows point awayfrom this critical surfacewhend
is less than four, implying that anotherfixed point must exist. Both results are consistentwith the
theoremsdiscussedin section2, which showthat 4’4 field theoryis trivial (nontrivial) whend is greater
than (less than) four. (Note that this simple analysisis inconclusivewhend equalsfour.)

A good questionto askis whetherothertermscan be presentin the original actionS [of eq. (3.14)]
which generatefurtherrelevantinteractionsat the gaussianfixed point. It is easyto see,however,that
if anotherinteraction is includedwith P4 powersof 4’ and P4 powersof ~ then the corresponding
eigenvalueis y= P4(1 — d12)— P4 + d. In four dimensionsthe symmetriesof Lorentz invarianceand
reflection (4’ —* —4’) symmetry in 4’ forbid the existenceof termswith positive y in the action. Thus
within the insular domain of validity of perturbationtheory, the aboveanalysisof the gaussianfixed
point is complete.

3.2.3. Therenormalizationgroup in the large-n limit
Another tractableexamplewhich demonstratesthe machineryof the renormalizationgroup is the

limit of a 4’4 theory as thenumbern of componentsincreaseswithoutbound.Theactionfor thislarge-n
limit can be written

S= Jddx[~c(~4’)2 + U(4’
2)], (3.44)

whereU(4’2) is an arbitraryfunction. The analysispresentedherefollows refs. [3.9]. Sincefor largen
the fractional fluctuation is small

4’2 ~ (3.45)

it is possibleto expand

U(4’2)~U(~4’2~)+~t((4’2))(4’2—(4’2~) , (3.46)

where

t(4’2) =2dU(Ø2)/,94’2, (3.47)
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so that for large n

SJd4x[c(~4’)2+t((4’2))4’2]+Ld[u((4’2))_~t((4’2))~4’2~]. (3.48)

The first term in eq. (3.8) is quadraticin 4’ and the secondis a constant.The probability distribution
exp(—5) is thusa gaussian,andthe renormalizationgrouptransformationcan be performedanalytical-
ly. (Note that the function t( (4’2)) plays the role of an effective m2, much like a self-consistentfield
approximation.)After the blocking (3.16) is performedon the action(3.44), the block actionis of the
same form, but with c’ = cb~. Thereforea fixed point with finite c requiresthat

c’=c, ~=O. (3.49)

A simple way of presentingthe solutionsfor the fixed point function U*(4’2) is as follows. Invert
t(q52) to get 4’2(t), andwrite

= ,~W~(p.)t~1. (3.50a)

Also solve t’(4’2) for 4’2 andget

= ~ W~(R~p.)t~ml. (3.50b)

The renormalizationgrouptransformationcan thenbe written

W~(R~p.)= [W~(p.)— W~]b~~_2m+ W~, (3.51a)

where

W~= (_1)m~nKdAd_2m(d— 2m)’ , (3.51b)

andKd is given by eq. (3.39b).
The renormalizationgroup transformationis most elegantwhenwritten in termsof “scaling fields”

g,,~(p.). These scaling fields [3.10]arethe generalizationof the eigenvectorsUrn of eq. (3.34),andobey

the equation

g~(R~p.)= g~(p.)b)~m, (3.52a)

wherethe eigenvaluesy,,, are

y~= d — 2m. (3.52b)

The g~(p.)are given in termsof the W~(p.)by

g~(p.)= W~(p.) — W,~,. (3.52c)
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The fixed point function t*(4’2) = 2 ô U*(4’2) /,94’2 is given implicitly by

= 1—(d — 2)A2d Jdp pd~l[(t* +p2)1 —p2]. (3.53)

The solutionof eq. (3.53) cannotbe expressedin generalasa closedanalyticform, but someproperties
of the solution are immediate:

(i) U*(4’2) is a minimum at 4’2 = b~for 2< d <4. Near the minimum

U*(4’2) U*(b~)+ (q52 — b~)2/2b~. (3.54a)

Thereare no otherminima and dt* /d4’2 >0 always.
(ii) For d � 4, U*(4’2) = t*(4’2) = 0, i.e., only a trivial (free-field) fixed point exists.
(iii) For small e = 4 — d > 0, the solution is

U*(4’2) = 8ITE (4’2 — nA2!32rr2)2. (3.54b)

For 2< d <4, the exponenty
1 = d — 2 is positive (relevant), and all the other y,,, are negative

(irrelevant). Thus the anomalousdimension74,2 of the operator4’2 is given by

‘y4,2=2—y1 = 6, (3.54c)

and vanishes as d—*4.
The aboveanalysisis particularlyinstructivebecauseit showsexplicitly that the form of the actionis

not invariant in generalunderblockingtransformations.Moreover,the preciseway in which the action
is alteredunder sucha transformationdependson the detailsof the schemechosen.For example,the
scalingfields g~(p.)changein away [cf. eq. (3.52a)]which dependsupon b. Thus, the p. [andtherefore
U(4’

2)] vary in a mannerwhich is determinedby the blockingtransformation.However, the y,,, do not
dependupon b. This is a ratherimportantpoint, and is worthy of elaboration.

Whena renormalizationgrouptransformationis performed,the original actionis mappedinto a new
action,which can be considerablydifferent in its functionalform. Two importantpropertiesshouldbe
preservedhowever.These are (i) the spacetimedimensionalityof the system,and (ii) the symmetry
groupof the orderparameterswhich distinguishthe phasesof the theory.Thus, as the renormalization
grouptransformationis repeated,the original systemis mappedthrougha seriesof new systems,which
typically share only thesecommonproperties.It is expectedthat the numberof fixed points of the
theory and their associatedcritical exponentswill remain the same. (In particular, the number of
relevantdirectionsata fixed point shouldnot dependupon the detailsof the blocking transformation.)
This ideais the so-called“universalityhypothesis”[3.11],which saysthat statisticalsystemsthat share
properties(i) and(ii) should alsodemonstratethe samecritical behavior.It is similar to the ideathat
the infinite-cutoff limit of a field theory should be independentof the definition of the cutoff. This
contemporarypicture of renormalization[1.51] (and the meaningof renormalizability) is reviewedin
ref. [3.12]. The basic idea is as follows: begin with a field theory defined via an action and fixed
momentumcutoff. This action is totally arbitrary, and can contain terms which a power-counting
analysiswould indicateare“unrenormalizable”.Next systematicallyintegrateout the high-momentum
componentsin this action; at a momentumscalemuch lower than the cutoff it will be found that the
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“unrenormalizable” terms in the original action can be accountedfor by a redefinition of the
renormalized coupling constantsat the lower sale. Specifically, the unrenormalizableinteractions
correspondto “irrelevant” directionsin the flow spaceof couplingconstantsas the cutoff is decreased.

The fact that the numberof renormalizedcouplingconstantsin a field theoryequalsthe numberof
“relevant” directions(or directionsof instability) at a fixed point is well known[1.51,3.6]. The reason
is that as the infinite-cutoff limit is taken,it is necessaryto adjustas many renormalizedparametersas
therearerelevantdirectionsin order to reachthe critical surface.A moreheuristicexplanationis to say
that as this limit is approached,the trajectoriesarefollowed in a backwarddirection,andso the critical
surfacehas as many degreesof instability as there are renormalizedcoupling constants..Marginal
directionsat the fixed point imply that in only one region of coupling constantspaceanotherfree
renormalizedparameterexists; thusthereshouldbea boundon thevalueof this parameter(seesection
5).

The acceptedpictureof howthis comesaboutcanbe adumbratedin the fashionof WilsonandKogut
[1.51]for the caseof the simplecutoff 4’4 theoryeq. (3.1). Considerfig. 3.2. The actionS0(A0) can be
definedin termsof the dimensionlessparameters

r0(A0) m~A~
2, u

0(A0) A0A0~
4 (3.55a,b)

[cf. eq. (3.2)]. Define ~
0(A0)as the dimensionless correlation length for S0(A0). Fromthe discussionof

eq. (3.7) it is clear that ~(co) must be infinite in orderthat the renormalizedmassmR is finite.

The conventionalway to achievethis is to give m0 a cutoff dependence such that the renormalized
massmR andcouplingconstantAR arecutoff independentas A—* ~. This can be accomplishedby the
following procedure.The dimensionlesscorrelationlength~(r0,u0) can bedefinedindependentlyof A0.
Choosem5~anddefine

A0 m}~s~(rØ,u0). (3.56)

The curve SD(AO) in fig. 3.2 is generatedby fixing the valueof u0 andsolving eq. (3.56) for r0. From

eqs. (3.55) the valuesof rn~ andA0 are determined.The limit A0 —* ~ of infinite cutoff is obtainedby

P0

~~_~IIII~Ti1T~
=—SD(AO)

G—- Qo N ~ -

5

~ E=02
p Rm

Fig. 3.2. Schematicdiagram of thepredictedflow structureof four-dimensional4.~field theory.
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letting r0(A0, u0) approachthe critical valueroc(uo). By eq. (3.56) mR is finite and independent of the
initial u0.

In fig. 3.2 the curve SD(AO) is indicated schematically. (For reasonsof clarity, the plot is two
dimensional.)By use of the renormalizationgroup, aset of curvesS~(A0)can also be generated.These
curvesdepict the evolutionof the action underthe renormalizationgroup transformation

A0—*A1_=e’A0. (3.57)

The curvesS~(A0) can be thoughtof as defining surfacesof constant“physics”.
For a given A0 thereis a valueof t for which S~(A0)intersectsthe surfaceJ where~ equalsone.Thus

S,(4) intersectsJ at a point Q4, which describesthe samephysicsas the original action
5D (4). Likewise

the action at point Q
10 defines the same system as SD(l

0). Note that both Q
4 and Q10 define theories

with the samerenormalizedmass(sometimescalled the “inverse correlationlength in physicalunits”).
As the cutoffA0 increaseswithoutbound,the trajectoryfalls closerandcloserto the point Q,,. When

A0 is infinite, the trajectory proceedsfrom the point R~andendsat the fixed point P0,. SinceP00 hasone
relevant direction (P,~ —* P0), only one parameterof the theory (mR) is free; the other (AR) is
determinedby the details of the flow structure. However, at every stage in the processa finite
renormalizedtheory exists. Hence the limit A0 —* exists and is independentof u0.

The abovediscussionmakesseveralsimplifying assumptions.First, additionalirrelevantinteractions
areignored,thoughit is easyto seethatthey do not affect the qualitativedetailsof the argument.It is
also assumedthat the fixed point P00 has only one relevant direction. This is not known, strictly
speaking,for four-dimensional4’4 theory,sinceits triviality hasnot beenproved.However,the above
analysisdoesdisplaymuch of the machineryof the renormalizationgroup,and how physicalconcepts
are phrasedwithin its framework.

Given the obviouscomplexityof the renormalizationgroup,it is sensibleto askwhetherit is superior
to direct numericalmethodsof solution. In fact, as is shown below, approximateanalytical and
numerical techniquesmeldedwith the renormalizationgroup yield a calculationaltechniqueof great
potential (the MonteCarlo renormalizationgroup). The difficulty of carrying out the renormalization
group is much less than that involved in solving the model, becausethe renormalizationgroup is a
transformationof nonsingularparametersand hasmuchmore room for approximations.

3.2.4. Approximatemomentum-spacerenormalizationgroup methods
Typically it is not possible to present an exact renormalizationgroup transformationfor a given

problem.Accordingly,manyapproximatemethodshavebeendevelopedandappliedto 4’4 field theory.
These can be separatedinto momentum-spaceand position-spacerenormalizationgroup techniques
accordingto the criterion usedto partition the degreesof freedomof the system.The resultsof all of
thesemethodsare at least consistentwith the idea that 4” field theory is trivial in four spacetime
dimensions.Severalof theseproceduresare reviewedbelow.

Wilson’s approximate recursion formula. The first explicit construction of an approximate
momentum-spacerenormalizationgroup was appliedto 4” field theoryby Wilson [3.7]. Although the
approximationsused in its derivation(seealso refs. [1.5], [3.4] and [3.13]) arehighly dubious,it is a
remarkableachievement,and was instrumental in launching the renormalizationgroup approachto
critical phenomena.Evenmoreinterestingis the fact that improvementsto the original approximations
make the end results worse [3.14]. It is evident that approximatetreatmentsof the renormalization
groupare very complicated(and a bit magical).
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The Wilson recursionrelationis derivedin the abovereferences.The actionat iterationnumber1 is

= J ddx [~c1(ô4)
2+ U

1(4’)], (3.58)

where 1 = 0 defines the starting point, in a d-dimensionalEuclideanvolume (2. It is assumedthat
U0(4’) = U0(— 4’). The momentumcomponentsin the theorybetweenA/2 andA areintegratedout (A
is the momentumcutoff); thus the transformationhasscalefactor b = 2. It can be shown that

c1~1= c1 2~. (3.59)

Thus a fixed point only occursfor ij equalto zero. The recursionrelationfor the fixed point (~= 0)
solution of the potentialterm U(4’) can be written in termsof Q(4’) ~QU(çb) as follows:

= 2’~ln[I,(çb 21—d/2) /I~(0)], (3.60a)

= J dy exp{-y
2 - ~[Q~(4’+ y) + Q

1(cb - y)]}. (3.60b)

Equations (3.60) define a sequence of functions {Q1(q5)} = {Q0(4’), Q~(çb),...} given an initial
function Q0(4’).

This recursion relation yields the exactgaussian critical exponent (~= ~) in four dimensions, as well
as the exact leadingtermsin anexpansionin s = 4 — d. Moreover, given an initial potential of the form

U0(4’) = a4’
2 + b4’4, (3.61)

the renormalizedpotentialgraduallyapproachesthe trivial gaussianfixed point resultU*(4’) = 0 in four
dimensions.Specifically, for a large number1 of iterationsof the recursionrelation, U~~ l

Since the cutoff in the theory is correspondinglyrescaledby 21, the approachto trivial free-field
behavioris logarithmicin this scalefactor. This behavioris alsopredictedin otherformulationsof the
renormalizationgroup (seeref. [3.15]and section13 of ref. [1.51]). The recursionrelationyields the
exactcritical exponentsfor an n-componentscalarfield theory in the large-nlimit for arbitraryd, and
also gives good numericalresultsfor d = 2 and 3 [1.51].A modelhasbeenderived[3.14]for which ~ is
not automaticallyzeroat a fixed point; also “hierarchical”modelsexistfor which the recursionrelation
is exact [3.16].

The derivationof this recursionrelation eqs. (3.59,60) reliesupon “uncontrolled” approximations.
It is not the first term in anexpansionin anysmallparameter,andit is not obvioushow to improvethe
calculation. This is a generalfeatureof most approximaterenormalizationgroup methodsat present.
One can thusonly judge the validity of such approximationsby comparisonwith the resultsof other
techniques(suchas thosedescribedbelow). In this respectit doesratherwell. Neverthelessit is clear
that the presentsituationis far from optimal.

Renormalization group from high-temperature series. A more accuraterenormalizationgroupwas
developedby Wilson ([3.17] andsection13 of ref. [1.51])and applied in an unsuccessfulsearchfor a
secondfixed point in four-dimensionalpure4’4 field theory.The basicphilosophyof this approachwas
that if a second(andpossiblynontrivial) fixed pointexists,thenthe renormalizationgroupflows should
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slow down as the boundaryof the domain of attractionof this fixed point is approached.This idea is
illustratedin fig. 3.3. Thegaussianfixed point is labelled~G’ andsecondfixed point is denotedby ~B•

The quarticcoupling is labelledu, and w definesanothercouplingwhich is irrelevantat the gaussian
fixed point. If tgate(uo)is definedto be the time thatagiven trajectorystartingat point u0 takesto pass
the gate, then

= [dtgate(uo)!duo]’ (3.62)

vanishesas u0 approachestheboundaryof the domainof the gaussianfixed point. In this sense4’(u0) is
like the original ~/‘function of Gell-Mann and Low, or the beta function.

The function 4’(u0) wasevaluated[1.51]from a high-temperatureseriesgeneratedby the methodof
ref. [3.18]. It was found that the u0 axis on the critical surfacein the spaceof initial interactionslies
entirely within the free-fielddomain.The effectof additionalinitial interactions(suchas~ 6 ~ 8, ~ 2 V4’

2
etc.) was not studied. These conclusions are completely in accord with the notion that 4’ is a free field
theory in four dimensions.

Functional integral methodsin the momentum-spacerenormalizationgroup. It is also possibleto
developexactfunctional integro-differentialequationswhich expresshow the actionchangesin acutoff
field theorywhenan infinitesimal numberof high-momentumcomponentsof the fields are integrated
out. An exampleis derivedin section11 of ref. [1.51].Subsequentwork [3.19]baseduponthis equation
was usedto prove rigorously that a non-gaussianfixed point exists in threespacetimedimensions,and
to bound the values of the correspondingcritical indices.Similar equationswere derivedin ref. [3.20]
andusedfor approximatecalculationsin 4” field theory in ref. [3.21].(No nontrivial fixed pointswere
found in four dimensions,consistentwith the picture generatedvia the perturbativerenormalization
group.) In this approachthe difficulties associatedwith defining anapproximaterenormalizationgroup
are reducedto the more routine problemof solving a functional differentialequation(see also ref.
[3.12]). Indeed,the bold assertionhasbeenmadethat suchequationswill “probablybe the basis for
most [future] work on the renormalizationgroup” [1.51].Neverthelessthis approachruns into trouble
(as doesanymomentum-spacerenormalizationgroup)whengaugetheoriesareincluded.The reasonis
thatan infinite numberof gaugedegreesof freedomareassociatedwith eachpoint in momentumspace;
thussingularitiesareencounteredevenwhenan infinitesimal volume in momentumspaceis integrated
out. This problemcan be avoidedby fixing the gauge, but then the renormalizedactionwhich results
can be wildly noninvariantundergaugetransformations.The complexityof the problemthusincreases
enormously.Thesedifficulties in fact originally formed part of the motivation for the developmentof
lattice gaugetheories[3.2].

PB
.

U
0 Uo~

Fig. 3.3. Possibletopologyof pure 4~field theory in the presenceof a secondfixed point P~.
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3.2.5. Approximate real-space renormalization group methods
The above-mentioneddifficulties associatedwith the integrationof gaugedegreesof freedomcan be

avoided in the real-spacerenormalizationgroup (see, for example,refs. [3.22—3.27]and section 5).
Specific applicationsto spin systemsarewell reviewedin ref. [3.5]; recall that the limit of largequartic
couplingin apure4’4 theoryis in fact anIsing spinmodel.The applicationof suchideasto 4’4 andother
quantumfield theories is largely unknownterritory, but some promisingpossibilities are explored
below.

The Kadanoff variational renormalization group. Impressivesuccessin the calculation of critical
exponentswas obtainedmost notably by the Kadanoff variational technique([3.25], with extensive
furtherwork reviewedin ref. [3.26]). Typically critical exponentsfor spin systemscan be obtainedwith
this simple analyticalformalismto three-digitaccuracy.Moreover, it gives the critical exponentsof the
gaussianfixed point in 4’4 field theorycorrect to first order in anexpansionin e (~4— d), and thus is
consistent with trivial behavior.

The basicpoint of this approachis to note that

(3.63)

whereexpectationvalues ~ are computedvia the definition

(o~=z~1JD4’ Oe~, Zs_JD4’es. (3.64)

For a generalfield theorythe partition functionZ.~ cannotbe calculatedexactly. Suppose,however,
that the partition function for a relatedproblemwith actionS + ~S,

Z~~
5fD4’ ~ (3.65)

can be solvedexactly. Then, given a definition of the free energy,

e’~~Z5, (3.66)

eq. (3.63) implies that

F5+~~�F5, (3.67)

providedthat

(~S)~=0. (3.68)

Equation(3.68) is easilysatisfied(by translationinvariance)if E~Sis takenas an “interactionmoving”
operation.

This procedurecan be incorporatedinto a real-spacerenormalizationgroupschemewhich includes
variational parametersin the projection operatorused to define block fields. Optimization of the
transformationthen leadsto a recursionrelation which defines a greatestlower bound on the free
energyof the system.Despitean obviouscriticism (it is not clearwhy a good approximatefree energy
implies good critical exponents),this approachis highly successful.



274 DiE. Ca/laway, Triviality pursuit

The Monte Carlo renormalizationgroup. The Monte Carlo renormalizationgroup [3.27—3.30]is a
combinationof the ideasof thereal-spacerenormalizationgroupwith MonteCarlosimulation[3.31].In
principle it is a techniqueof greatpower, for it can be systematicallyimprovedto arbitraryaccuracy.In
practice,thiscombinationof numericalanalysiswith judiciousapproximationcan lead to techniquesof
someutility in the nonperturbativeanalysisof quantumfield theory.

Operationallythe method proceedsas follows. First, a setof original (or “site”) configurationsis
generatedby numericalmeansaccordingto the distribution

e_S{4)D4’

whereS{4’} is the original action, definedover the spaceof the fields {4’}. Next, block fields {4’} are
generatedaccordingto a projectionoperatorP[ { 4” }, { 4’ }], normalizedso that

f D4” P[{4”}, {4’}] = 1.

The block action 5’ { 4”) is definedvia

e’~4’~=JD4” P[{4”}, {4’}]e~4~. (3.69b)

[Notethat in a real calculationwith scalefactor b in d dimensionsthereareb” site fields for eachblock
field.] Thus the endresult is to generatea setof block configurationsof the { 4”). Theseconfigurations
aredistributedwith the weight(3.69b); it remainsto extractthe block action5’ { 4”) which generates
them.Oncethe block actionis extracted,the block couplingconstantswhich define it can beevaluated
in termsof the site couplings,and the renormalizationgroup flows constructed.

In the first calculationfor 4’4 field theory [3.29]configurationsweregeneratedaccordingto an action

S = —K + ~ U~(4’~),U
0(4’~)= A(4’~—f)

2, (3.70)
(I’)

where (if) refers to all nearest-neighborpairson a hypercubiclattice,eachsummedonce.The system
was divided into hypercubicblocks of b” fields, and the block field 4” for eachblock was definedas

/ \/ \1/2

4” = sign(~~ 4’j)(\b” E , (3.71)
block block

in termsof the b’’ site fields { 4’) within the block. In the Ising model limit of largeA the block spin is
thusassignedaccordingto the popular “majority rule” prescription[3.5]. This rule definesthe block
Ising spin as the sign of the sumof the spinsin the block, i.e., as the samevalue as the “majority” of
spins.

It is possible [3.29] to fix all but one of the block fields in such a fashion as to eliminatemost
interactions in the blocked system. The remaining block field 4~then fluctuatesaccordingto a
probability distribution

P(4’
0)xexp[—U(4’,)], (3.72)
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Fig. 3.4. Block renormalizedpotential U(~)plotted versus4, takenfrom ref. [3.29].Data pointsareextracted(eq. 3.72)by direct measurement,
while the solid line denotesthe curveobtainedby evaluationof moments(eq. 3.74).

from which the potentialU(4’~)can be extracted.This potential is well approximatedby a form

U(4’~)= A’[(4’~)
2 —f’]2 , (3.73)

where the block couplingsA’ andf’ are determined[3.39]from expectationvaluesderivedfrom the

momentequations,

J d4’~ ~ e~~’~4~)= 0, n = 1,2. (3.74)

In fig. 3.4 U(4’,) is plotted(datapoints, eq. 3.72)versusthe moment-extractedform (solid line eqs.
3.73, 74). Thus it can be seenthat with a judiciouschoiceof the blockingprocedure,the block action
can be approximatedby a simple form from which the renormalizedcouplings can be extracted.
Subsequentcalculationswith thisandotherblockingproceduresverify this result [3.32].A flow diagram
for the theorycan thusbe obtained,andfixed pointslocated. Critical exponentscan also beextracted,
in principle to arbitraryaccuracy.Again, all results are consistentwith triviality in pure 4’4 theory.

3.2.6. Rigorousrenormalizationgroup methods
Progresshas also been madein the developmentof rigorous approachesto the renormalization

group. One seminal approachis known as “phase-cell localization” [3.33]. The basic idea of this
approachis to partition the degreesof freedom of a given systeminto sets which are finite and
independent.These generalideashavebeenusedby many authors[3.34],and haveplayed a part in
earlyrigorous demonstrationssuch as the linear lower boundon the vacuumenergyof P(4’)

2 models
[3.35], the renormalizationof 4’4 field theory in three dimensions[3.33], and in the structure of
estimatesin the cluster expansion[3.36].More recentresultsinclude the constructionof the two-
dimensional Gross—Neveumodel [3.37,3.38]. Other important work was done by Gallavotti and
collaborators [3.39]and by others (see ref. [3.40] for further references).
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One general conclusion of this line of thought is that perturbativerenormalizability is neither
necessarynor sufficient for the existenceof a quantumfield theory. For instance,the (perturbatively
nonrenormalizable)Gross—Neveumodel in 2 + e dimensions can in fact be constructed [3.41].This
model is definedby replacingthe free fermionic propagator—(p . y)l by —Ipl”(p . y)~.The theory
lacksOsterwalder—Schraderreflectionpositivity, however.A similar approachcan be usedto construct
A4’4 field theory with negative coupling (A<0) [3.42]. This model is metastableand thus also lacks
reflectionpositivity. (Other efforts to escapetriviality by nonstandardformulationsof 4’4 field theory
arecoveredbriefly in the nextsection.) Constructionsof this form do, however,showthat the verdict
on whether or not a theory is trivial should be based upon more information than the meager
knowledgegainedfrom perturbationtheory.Furtherinterestingresultsarereviewedin refs. [3.43]and
[3.44].

Finally, it is interestingto mention a new result [3.45]producedby anovel approach—a“computer
assistedproof”. In this paperit is shown that the hierarchical4” field theory hasa nongaussianfixed
point in threedimensions.The methodusedgeneratesa very large numberof inequalitieswhich are
subsequentlycheckedandassembledby computer.

3.3. Connectionswith the historical approach

In the above subsections,the problem of triviality was formulated in terms of the Wilson
renormalizationgroup. Nevertheless,the developmentof thistheoreticalstructurewas precededby the
so-called “historical” renormalizationgroup [1.44—1.50,3.1]. Although some of this “historical”
formalismhasbeenappliedin the abovesubsectionsand especiallyin section1, a set of definitionshas
not beenpresented.In this subsectionthe historical renormalizationgroup is outlined, with special
emphasispaid to the connectionsbetweenit and the Wilson approach.In particular, the relations
betweencritical exponentsand anomalousdimensionsareclarified, and such conceptsas fixed points,
flow diagrams,and the universalityhypothesisare expressedin this formalism.

The analysisbeginsby studyingthe theoryon the critical surfacewherethe renormalizedmassesof
the theory vanish. Once this surfaceis mappedout, equationsin the whole critical region can be
developed.

Anotheridearelatedto the renormalizationgroupleadsto the so-calledCallan—Symanzikequations
[3.6]. These are useful for a theory renormalizedat p. equal to zero, but with a finite renormalized
mass. Here the comparisonis between theories with different values of the renormalizedmass.
Unfortunatelythe zero-mass,mR—+0, limit is difficult to expressin this framework. Becauseof this
technicalproblemthe Callan—Symanzikequationsare slowly being displacedin favor of an expansion
of the renormalizationgroup equationsaroundthe critical (zero mass)region. Interestedreaderscan
find discussionsof the Callan—Symanzikequationsin refs. [1.50] and [3.1]; however, for reasonsof
spacethey arenot consideredfurther here.

Finally, usingan approachdueoriginally to Zinn-Justin [3.47,1.50], andclosestin spirit to the above
ideasof Wilson, differential equationsrelating different baretheorieswith the samerenormalized
couplingconstantsarederivedbelow.

Becauseof the fact that this review is intendedprimarily for high-energyphysicists(to whom the
historicalrenormalizationgroupis well known), this subsectionis limited to theexplorationof parallels
betweenthe Wilson andother renormalizationgroup schemes.Readersinterestedin further details
mayfind refs. [3.1] and [1.50]useful.
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3.3.1. Conventionsand notation
It is convenient[1.50] to define a scalar field theory in termsof the completeEuclideanGreen’s

functions,or Schwingerfunctions. Theseare definedvia a Euclideanfunctional integral,

Z(J) = K
1 JDqS exp(_S(4’)+ f ddx J(x)4’(x)), (3.75a)

whereK is chosenso that

Z(0)= 1. (3.75b)

The Schwingerfunctions G~ (x
1,. . . , xN) aredefinedimplicitly by a powerseriesexpansionof eqs.

(3.75) in J(x),

Z(J) = ~ f ddx~- . . ddx~J(x1). . . J(xN)G~(xl,. . - ,xN). (3.76)

The connectedGreen’sfunctionsG~(x1,. . - , xN) are definedby a generatingfunction,

W(J) = ln Z(J)

= ~ f ddx~ . . ddxN J(x1). . . J(xN)G~~(xl,.- xN). (3.77)

The historical renormalizationgroup can be definedin termsof the one-particleirreducible(OPI)
vertex functions, F~(x1,.. - , xN). These are constructedby a Legendretransformationto a new
variable ~I~(x),

~P(x)=~W(J)/6J(x)= (4’(x)). (3.78)

The generatingfunction F(P) for the ~(N)(x1 . . , xN) is the Legendretransformof W(J),

= f ddxJ(x)c1~(x)— W(J) (3.79a)

= ~ f ddxi . ddxN [~(x1) — G~(x1)] . . [~(~) — G”~(xN)]F~(xl,.. . xN).
N=2 (3.79b)

The Fourier transformof F~(x1,.. . , xN) is definedvia

+ .. . +pN)F (P . , PN)

= (2IT)d ~fddxi - - ddxN exp(i ~ ~1~1)F~(x5,. . - ,xN). (3.80)

Somespecific examplesof the Green’sand vertexfunctionsare

G~
2~(k

1,k2) = K 4’(k1 )4’(k2)) — (4’(k1)) (4’(k2)) = G~

2~(k

1,k2) — G(l)(k1)GW(k2) . (3.81a)
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Translationinvarianceimplies that

G~2~(k
1,k2) = (2IT)

46(k

1 + k2)G~

2~(k

1), F~
2~(k

1,k2) = (2ir)d6(ki + k2)F~

2~(k

1), (3.81b)

where

F~
2~(k)= [G~2~(k)]~’ - (3.81c)

Physicalparticlesare defined by poles in G~2~(k), andthus zeroes of F~2~(k).
It is alsouseful to define 4’2(x) insertionsvia a sourcet(x) for this compositefield,

S~S- Jddx J(x)4’(x)+ ~ f ddx t(x)4’2(x). (3.82)

The generatingfunctional techniquesoutlined abovecan thenbe used to defineOPI vertexfunctions
- qL; p

1,- - - PN) for L insertions of the operatorcb(x) and N insertionsof 4’
2(x)

[3.48,1.50].

3.3.2. Renormalizationgroup equationsfor massless4’4 theory
The processof renormalizationis well familiar to field theorists.The basic ideais that,whereasthe

so-called“bare” vertexand Green’s function defined abovedivergein the limit of large cutoff, it is
possible to define finite renormalized functions. In order to do so it is also necessaryto define
renormalizedmassesand couplingsfor the theory.

The F~’ L) for (N, L) not equalto (0,2) or (0,0) are multiplicatively renormalizable,at least in
perturbationtheory.This meansthat new renormalizedvertex functionsF~”~ (q~,p

1) can be defined,

= (Z4 )/
2(Z

42)’~F~”~, (N,L) � (0,2) or (0,0), (3.83)

wherethe or Z42 arefield renormalizationconstantsdeterminedby conditionsdescribedbelow. The
vertexfunctionF~°’2) is additively renormalizable,

= (Z42)

2[F~°’2~— f~(O2)] , (3.84)

and is finite when f’(O2) is chosenappropriately.A similar resultholds for p(00)~

The renormalizedvertex functions F~”~ are written in terms of renormalizedmassesmR and
couplings AR. Thus four constraintsareneededto define four renormalizationsm~,AR, Z

4, and Z4,2.
These constraints(or “renormalizationconditions”) are to a large extent arbitrary. Physical results
should be independentof the renormalizationgroup schemeused.It is this independencewhich, in
part, implies the renormalizationgroup.

The following adumbrationof the historicalrenormalizationgroupfollows the work of Amit [3.1];
also see refs. [3.49] and [1.50].A convenientchoice of the renormalizationschemeis given by the
equations

mR5’~O. F~(q~=0)=m~, (3.85a)

(o/~q
2)1~(q~= 0) = 1, (3.85b)
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= 0) = AR, (3.85c)

= 0) = 1. (3.85d)

Additional renormalizationconditionslike

= 0) = 0 (3.85e)

can be usedto fix f.(0.2)

The renormalization conditions eqs. (3.85) suffice when the renormalized mass mRis finite. If mR

vanishes(as happensat the critical point when the cutoff is finite) the required renormalization
constantsdevelopinfrared divergences.Thus it is moreappropriateto employ a differentschemefor
the masslesstheory.An arbitraryrenormalizationpoint p.2 is traditionally introducedas follows:

2 (2)

mR=0. FR (q~=0) =0, (3.86a)

(c9Ioq2)F~(qj)Iq2~2= 1, (3.86b)

(4)

FR (q
1)I~ = A~(p.), (3.86c)

F~~(q1,q2,p)ITP = 1, (3.86d)

=0, (3.86e)

where “SP” means

2 32 12SP: ~ q1.q1~c4p.(48.—1),

i.e.,

(q~+q1)
2=p.2 fori�j, (3.87)

and “SP” means

SP: q~=~p.2, q
1-q2=—)p.

2,

p2 = (q

1 + q2)
2 = p.2. (3.88)

Equation(3.86a) is usuallychosento applyat zeromomentum,thoughit is also satisfactoryat q2 = p.2.
In order to satisfy this equation, the bare mass m

0 must be adjustedso that the renormalizedmass
vanishes[cf. eq. (3.85a)]. Thus m0= m0(A0,A) and is not an independentparameterin the critical
theory. Note, however,that m0 is in generalnonzero,eventhoughthe renormalizedmassvanishes.

The field strengthrenormalizationconstantsZ4 and Z42 dependexplicitly upon p., A, and A~(p.),

= Z4(p./A, p.~

6A~(p.)), Z

42 = Z42(p./A,p.~
5A~(p.)),s 4— d. (3.89)

Thebaretheory is definedwithoutreferenceto the scalep.2. Thus,in the limit A—*~ [cf. eq. (3.83)]

(p. ~/~p.)~A(ZFR) = 0, (3.90)
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which implies that

[p. ôh9p.+f3(A~,p.)d/9A~—~ (3.91a)

in which

/3(AR, p.) = (p. (~/dp.)A~(p.))~A y4,(A,~,p.)= (p. (~/ôp.)ln Z4)Afl . (3.91b)

Both /3 and 74 are finite whenA—* ~ in d = 4. The functions appearingin eqs. (3.91) representthe
resultsof the A—+ ~ limit.

A renormalizationgroupequationcan alsobe derivedfor ~

[p. d/~p.+ $(AR, p.) — ~Ny4(AR,p.) + L’y42(AR, p.)]F~”
4(q~,p~AR, IL) = 0, (3.92)

where

742(AR,p.) = (—p. (c9!ôp.) ln(Z4,2))4. (3.93)

In four dimensions/3, y~,and 742 are dimensionless,and so

/3 = /3(A), 74 = y4(A), 742 = y42(A). (3.94)

As always,eq. (3.93) doesnot includethe specialcases(N,L) = (0,0) or (0,2). As was pointedout by
Coleman[3.50],eqs. (3.91)and(3.92)haveaninterestingpictorial analogy.The renormalizationgroup
equationscan be thoughtof as describingthe flow of bacteriain aone-dimensionalchannel.Time is
measuredby ln p., the instantaneousvelocity is /3(A), and the anomalousdimensions74 and 742 are
(dependingupon their signs)sourceor sink terms.

The renormalizationgroupequation(3.91)can beused to determinethe high-momentumbehaviour
of the vertex function. For example,dimensionalanalysisyields the result

(NO) N+d—i/2 (NO)FR (pq~, AR, p.) = FR (q1, AR, p./p). (3.95)

The combinationof eqs. (3.92) and (3.95) then implies that

£(p)

F~’°~(pq~,AR, p.) = ~N+d~Nd/2 exp(_~J ~ dA)F~~)(qj,A(p), p.), (3.96a)

where

A(s)

s=lnp=f ~ ~3A(s)/ôs=/3(A). (3.96b,c)

As pointedout in section1, the existenceof a nontrivialtheory is relatedto thepresenceof zeroesin
the beta function,
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f3(A*)=0. (3.97)

The valuesof A* which satisfyeq. (3.97) areknownas fixed points. At a fixed point, the renormaliza-
tion group predictsa simple scaling behaviorfor the vertexfunctions. Equations(3.91) reduceto

[p.s-3/ôp.— ~ A*, p.) = 0. (3.98)

Equation(3.98) implies that under a rescalingof momentaq,—* pq1,

F~’°~—+F~’°~(pq~,A*, p.) = p(N+d_l/
2)_NZ8(A*)/2F(~N~O)(q,A*, p.) , (3.99)

and in particular [cf. eq. (3.25)]

F~’°~(pq,A*, p.) = p2~”~F~’°~(q,A*, p.). (3.100)

Thus F~’°~behavesas if eachof the fields 4’(x) scaledlike

4’(x)—* p~4’(x/p) (3.101)

at a fixed point, where

d
4~d/2—1+fl!2, ~q=_y4(A*)_=y (3.102)

[cf. eqs(3.15)].That is, eachof the fields 4’(x) scalesas if it hadan additional“anomalousdimension”
~j/2 alongwith its “engineeringdimension”d12 — 1 (seeref. [1.51]). Powersof p. areincludedin order
to makethe dimensionalityof the vertexfunctionscomeout right. Thus,at a fixed point

F~(q~,A*, p.)= Cp.~q

2~, (3.103)

whereC is a constant.Similarly, for the barefunctions

F~2~(q,A
0,A) = C’A’~q

2~, (3.104)

implying that

Z
4(A*, p./A) = C”(p./A)”. (3.105)

It is importantto point out thatthe derivationof eq. (3.94) implicitly assumesthat/3(A) hasonly a
single zero at A*. If /3(A) hasa doublezero at A* (ashappensfor 4’4 theory at A = 0), then near A*

/3(A) = a(A— A*)
2,

74(A)= 74(A*) + .~/ç;,(A*)(A— A*) +.... (3.106a,b)

The prefactor in eq. (3.96a) is

A(s)

exp(—~J ~ dA) p”~~
2(ln p)~V~~~2a (3.107)
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Thus logarithmic scaling violations result from the presenceof the doublezero in /3(A). This double
zero is connectedto the fact that A is a marginalcouplingnearthe gaussianfixed point [cf. eq. (3.42) et
seq.].A further discussionof the implications of marginal operatorsfor scaling violations appearsin
section5.4.

3.3.3. Renormalizationgroup equationsin the critical region: The relation betweenv and 742

In the above subsection,the renormalizationgroup was formulatedfor the massless4’4 theory.
Specifically the baremassm0 of the theory wasadjustedto a certainvaluemeso that the renormalized
mass mR was zero. The masslesstheory defines (at finite cutoff A) a critical theory where the
dimensional correlation length ~ is infinite.

In order to understandfurther the connectionsbetweenthe Wilson and historical renormalization
groupapproaches,it is necessaryto considerthetheoryawayfrom the critical point. ThebareLagrange
densityhasa term

~ (3.108)

The difference~m
2shouldbe interpretedasthe limit of a spatiallyvaryingquantity asit tendstowardsa

constant.When ~m2vanishes,the renormalizedmassvanishesas well,

-~m~— (~im2)~” (3.109)

[cf. eq. (3.11)]. Equation(3.109)describesthe way that the dimensionlesscorrelationlength~vanishes
at a critical point. The analogywith critical phenomenacan be recoveredvia the identification

= T— T~ (3.110)

mc T~

whereT is the “temperature”of the analogousstatisticalsystem,andTc is its critical temperature.The
fact that ~ is no longer infinite when ~m2is finite is implied by the fact that (vide supra) ~m2is a
“relevant” coupling at the critical point in the Wilson approach.

Define a new (position independent)variable t by [cf. eq. (3.82)]

t~~m2/Z
42. (3.111)

Then it can be shown that [1.50, 3.1]

[p. 9/9p. + /3(A) 9/8A — ~Ny4,(A)+ 742 t d/dt]F~°’= 0. (3.112)

Define

0= ~y42(Av). (3.113)

Thenat a fixed point A*

[p. a/op.— ~Nq— Ot d/ilt]F~”°~= 0, (3.114)
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which hasa solution

F~”°~(q~,t, p.)= p.”
2F”~(q

1, p.tvo) - (3.115)

Fromdimensionalanalysis

F~”°~(q~,t, p.) = pN+d_Nd/

2j~o(~N~O)(p~lq,p~2t,p~1p.). (3.116)

Choose

2 1/(6+2)pp.(tIp.)

Then

t, p.) = p.x1(t/p.2)x2F(N)[q.p._l(t/p.2)x3] , (3.118a)

where

x
1~d+N(2—d)I2, ~d+N(2_d—n)I2 x3~—1/(0+2). (3.118b)

Thus the vertexfunctionsdependonly upon the combination~ with

~c t°~
2~- (3.119)

Equations(3.109) and (3.119) togetherimply that

(3.120)

which is the desiredresult.

3.3.4. Renormalizationgroup equationsfor the bare theory
An approachwhich was originally suggestedby Zinn—Justin[3.7, 1.50] (andfalls closestin spirit to

the ideasof Wilson) is to considerall baretheorieswhich correspondto a given renormalizedtheory.
Although this implementationof the ideasof the renormalizationgroupis conceptuallyvery different
from the historical schemeoutlinedabove,the resultingequationsandtheir solutionsarequite similar.
Thus we shall only give a brief outline of the method.

Recall that the statementof renormalizabilityis that the renormalizedvertexfunctions~

F~(q~,AR, p.) = Z~2(A
0,p./A)F~”~(q1,A0, A), (3.121)

havea finite limit which is independentof A as A—÷cc~Thus in this limit

[A (s9/ôA)F~]AR~ = 0 (3.122)

(for conveniencethe critical theorywith m~= 0 is considered).Equation(3.122) implies that
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[A 59/c9A + /3(A0) ~/9A0— ~Ny4(A0)]F~(q,, A0, A) = 0, (3.123a)

where

/3(A0) = A(o~AoloA)4 , y4(A0)= —A(o ln Z4/c9A)AR~ (3.123b)

arefinite [1.50] (at leastin perturbationtheory) asfl—* cc~Becausetheyaredimensionless,theyarealso
independentof p. andA in thislimit, anddependonly upon A0. Equations(3.123)describethechanges
in the barevertexfunction F(N) andbarequarticcoupling A0 requiredto leavethe renormalizedtheory
invariant as the cutoff A is varied. Theycan be usedto derivescalingrelationslike eq. (3.104)directly.
Note that in contrastto eq. (3.96c),

A 19A~(A)h9A= —/3(A0), (3.124)

andsoherecouplingconstantsflow in a direction oppositeto the flow in the historicalrenormalization
group. Thus as A—+ ~ the coupling A0(A) flows (at least for small A0) towardthe gaussianfixed point
A0 = 0. The resulting scaling at the gaussianfixed point occursindependentlyof the initial value of
A0(A); this is an exampleof the phenomenonof “universality” alluded to above.

In this last subsectionthe ideasof fixed points, critical exponents,renormalizationgroupflows, and
universalityhavebeenshownto be commonto both theWilson andhistoricalapproaches.Much of the
work done in the Wilson approachhas its parallelsin the historical formalism as well. For example,
Wilson’s approximaterecursionformulawas also derivedfrom a diagrammaticexpansionformula by
Polyakov [1.51]. It shouldbe evidentthat the problemof triviality hasanaturalplacein eithersetting.
In section5, the applicationof theseideasto problemsof direct interestto particle physicists(most
notably the standardmodelof the weak interaction)is discussed.Possiblephenomenologicalimplica-
tions of the flow structureof the theory—suchas a boundedor predictableHiggs mass—arealso
mentioned.

4. Other approaches—Selectedalternative views of triviality

In this sectiona few of the remainingpursuitsof triviality areconsidered.The first two subsections
respectivelycoverdirect numericalsimulationandhigh-temperatureseries;following theseaccountsis a
surveyof various speculationson ways to constructsensiblenontrivial 4’4 field theories.

4.1. Direct numericalsimulation

The fact that lattice field theoriesare amenableto numericalsolution (see also sections3 and 5)
implies that triviality can be studiedin this fashion. By numericalmeansit is possibleto evaluatethe
field strength renormalization and the renormalized coupling constants as a function of lattice spacing a
in a given finite volume. The continuumfield theory thenarisesasthe limit of vanishinglatticespacing
is taken[2.1, 4.1, 4.2]. Extrapolationof the renormalizedquarticcouplingAR(a) to zerolatticespacing
yields apredictionfor its valueAR(O) in the continuum.If a nontrivial continuum4’4 theory is to exist,
the valueof AR(O) in thislimit mustbe boundedaway from zero[4.3,4.4]. (Rigorousupperboundson
the valueof AR havebeenconstructed[4.5]; see alsosection2.)
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A landmarkcalculationof thisform wasperformedby Freedman,Smolensky,andWeingarten[4.6].
The lattice theory is (modulo a few changesin notation) governedby an action defined upon a
d-dimensionalhypercubiclattice with N siteson aside,

S = ~ [4’(n) - 4’(n + p.)]2 + ~(amo)2~ [4’(n)]~ + a4~A
0~ [4’(n)]~, (4.1)

whereas usualn denotesa latticesite, p. (=1,.. . , d) denotesa direction,and(m0,A0) arerespectively
the barelatticemassandquarticcouplingconstant.Here 4’(n) is a dimensionlesslattice field relatedto
its continuumcounterpart4’(x) by

4’(x) = a1_0u124’(n). (4.2)

Using standardMonte Carlo techniques,the Fourier transform4’( q) of 4’(n) is computed,

~(q) = ~ exp(iaq. n) q5(n). (4.3)

The quantity 4i( q) is evaluatedat q equalto zeroandatq = p 2 ir/Na. An adequatedefinition of the
renormalizedmass is

-2 d 2continuum: m,~= —~--~ln G(q )Iq=o’ (4.4)

in the continuum,whereG(q
2) is the renormalizedtwo-point function in momentumspace.(Note that

if gaugefields arepresent,the definition (4.4) is not gaugeinvariant, as it doesnot correspondto the
pole of a propagator.)In lattice terminology,eq. (4.4) can be translatedas

lattice: m~2= [(4’(~)2) — ~ . (4.5)

In the free-fieldlimit A
0 = 0, eq. (4.5) reducesto

free lattice: m~
2= m~2[(IT/N)sin(ITIN)]2. (4.6)

A renormalizedmomentum-dependentunitless coupling constantwas also defined,

A~(q)= _(Nam~)d[(4’(O)2~~(q)~2)— ~ . (4.7)

Specifically the quantitiesAR(O) and AR(p) were evaluatedby theseauthors.The couplingAR(O) is a
truncated,renormalizedconnectedfour-point function atzero momentum.The momentum-dependent
couplingAR( p), by contrast,hasone externalleg at momentump and anotherat —p. It also differs
from AR(O) by an overall factor of (4’(0)2)!(I4’(p)12). A factorof m~4was includedin eq. (4.7) to
ensurethat A~(q) is dimensionlessin arbitrary dimensiond. To leadingorder in A

0, AR(O) 24m~
4A

0,
while in the limit Na—+co, AR(p)=~24m~

4AO,also to leading order in A
0.

According to the philosophyoutlined above,the lattice spacinga is sentto zero while the volume
(Na)” is kept fixed. In practical terms this means that a seriesof measurementsare madeupon a
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sequenceof latticeswith N taking increasinglylargervalues(so that thelattice spacinga is progressively
smaller).For eachvalue of N, the baremassm0 is adjusteduntil the renormalizedmassequalsacertain
value. The valuem,~= 3.63 (with estimated error of a few percent)waschosenby theseauthors[4.6].
This choiceof m~was motivatedas a compromisebetweenthe simultaneousrequirementsthat the
volume be large andthe lattice spacingbe small in units of m~

Oncethis tuning of m0was achieved,the valueof AR wasevaluatedas a function of the barequartic
couplingA0. Theseresultsare shownin figs. 4.1—4.3for d = 3 and4. Thecontrastbetweenthe two cases
is evident—inthreedimensions(fig. 4.1) AR appearsto approacha nonzerolimiting valueas the lattice
spacing decreases.This is as expected,for (see section 2) in three dimensions4’4 field theory is
nontrivial. On the otherhand, in four dimensionsa trivial theory is anticipated.Consonantwith this
expectation,AR(O) andAR(p) approachzero uniformly in this limit (figs. 4.2 and 4.3).

The optimism generatedby the apparenteaseof producingtheseresults must be temperedwith
realisticjudgement,however.First, it is well to rememberthat a completeerror analysisof theseand
otherrelatedresults[4.7—4.10]is lacking. Errors arisein suchcalculationsfrom both systematiceffects
(like the finite volume of the lattice) andstatisticaleffects(critical slowing down).It is thereforewise to
repeatMonte Carlocalculationsusingalternativeapproaches,suchas Langevin [4.8] andmicrocanoni-
cal [4.11]methods,for in thesecasesthe errorsare at least different.

Neverthelessit is exciting to consider the possibilities which open up when these numerical
computationsare takenseriously.For instance,one novel resultof ref. [4.7] was the finding that the
two-point function was equalto the free-field correlationfunction. This resultwasessentiallyconfirmed
in ref. [4.8], whereit was found that within error the momentum-dependentfield strengthrenormaliza-
tion Z(p) was equalto one for all measuredmomenta.Theseconclusionsimply that the renormalized
theory is at bestveryweakly interacting.Simulationsin the brokensymmetryphaseof the theory [4.9]
yield resultswhich also areconsistentwith the triviality of 4” field theory in four dimensions.

50 d~3 00 N~3~,__1
4
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~

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 .0

q
0/(50-i-g0) g0/(50÷g0)

Fig. 4.1. The zero-momentumcoupling constantg~,(O)as a function Fig. 4.2. The zero-momentumrenormalizedcoupling constantg~(0)
of thebarecoupling constantratiog,/(50+ g0) for (~4)3on latticesof as afunctionof thebarecouplingconstantratiog0

1(SO+ g
0) for (~4)4

size N = 3, 6, and 12. Redrawnfrom ref. [4.6]. on latticesof sizeN 3, 4, 6, and 10. Redrawnfrom ref. [4.6].
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Fig. 4.3. Themomentump renormalizedcouplingconstantg,~(p) as afunctionof thebarecouplingconstantratiog
01(50+ g0) for (~4)~on lattices

of sizeN = 3, 4, 6 and10. Redrawnfrom ref. [4.6].

4.2. High-temperature series

The so-called“high-temperature”or “strong-coupling” seriesapproachhasbeenremarkablysuc-
cessful in the calculationof accuratecritical exponentsandtemperaturesin statisticalmechanics(see,
e.g., refs. [4.12, 4.13] for reviews). Much of this work actually concernsthe Ising model. However,
since(asdiscussedin section3) the Ising model is in the sameuniversalityclassas single-component4’4
field theory, the critical exponentsshould be the same.

The accuracyof this approachis remarkable.For instance,in an earlycalculation[4.14],Fisherand
Gauntthusevaluatedthe free energyandsusceptibilityfor anIsing modelon a generald-dimensional
hypercubiclattice.Theseseries(in inversepowersof the temperature)were rearrangedin a new series
in inverse powers of the coordinationnumber q (for a hypercubiclattice, q = 2d). The critical
temperatureof this model can thus be developedin a series

=1— q~— 1~q
2— 4~q3 — 21~q4— 133~q5--~. (4.8)

Reasonableapproximationsto the Ising modelresultsareobtainedevenfor d = 2 or 3 (errors6% and
1%, respectively)whenthe seriesis truncatedafter the q1 term. Later calculations[4.15]predicted
that in four dimensions ii = 0.536 ±0.003 (comparethe expectedmean-field result ii = fl. Of course
this method assumesthat the critical exponentsvary continuouslyas a function of spacetimedi-
mensionalityd. As is discussedin sections2 and3, it is now believedthat v equals~whend >4, and
that only logarithmic correctionsto this mean-fieldresult can exist in four dimensions.Logarithmic
correctionsare easily missedin this approachif due care is not taken, and can lead to inaccurate
exponents.

Much of the relevant work with high-temperatureseries involves the use of so-called“Padé
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approximants” [4.16,4.17]. These were first introduced into physics by Baker and collaborators
[4.18,4.19]; excellentreviews can be found in refs. [4.20]and [4.13].

The main ingredientin the Padérecipe (and hereonly the simplestand most direct approachis
discussed)is the approximationof a finite seriesF(z) by a ratio of two finite polynomials.The [L, M]
Padéapproximantto F(z) is the ratio of a polynomial PL(z) of degreeL to a polynomial QM(z) of
degreeM,

[L, M] PL(z) ~0 + ~1z+ p2z
2+ . . . + PLZ~ - (4.9)

QM(z) 1+q
1z+q2z +~“+q~z

In eq. (4.9) the coefficientsp1 andq1 arechosenso thatthe seriesexpansionof [L, M] agreeswith that
of F(z) through order L + M, i.e.,

F(z) = [L, M] + O(z
M~). (4.10)

The coefficientsso chosenareunique[4,20].The constructionof Padéapproximantsallows oneto form
an approximateanalyticcontinuationof a given seriesbeyondits radiusof convergenceand up to (or
beyond)a singularity.

In the theoryof critical phenomena(andthusin field-theoreticsystems)a typical quantity of interest
hasa singularity structurefor z < z~of the form

1(z) (1 — z/z~)’J(z), (4.11)

whereJ(z) is analytic at ze.Then, if F(z) is takento be the logarithmicderivativeof 1(z),

F(z)~~lnI(z)=T[1+O(z_zc)] asz~z~, (4.12)

the Padé approximantsto F(z) may yield information on the singularities of 1(z). If a given
approximantto F(z) hasapolenearz~,thenthe locationof the polegives an estimateof z~,while the
correspondingresiduecan be usedto estimater. (Thereadershouldbe cautionedat this point that the
Padéapproximanttechnologyhas becomea veritable scienceof its own, and that far more subtle
methodsthan this onedo in fact exist [4.16—4.20].)

The resultsof the Padéanalysisaretypically displayedas a “Padétable” [4.16].If F(z) is knownasa
powerseriesup to zN, the correspondingPadétable is given by the setof approximants:

[0,0] [1,0] [2,0] .. . [N,0]

[0,1] [1,1] ... [N—1,1] (4.13)

[0,N]

Often only the resultsof the Padéanalysis(i.e., the pole location and residue)are tabulatedin this
form. Usually thereare a few “bad eggs”,entriesin the table which are radically different from the
others,but the Padétable normally convergeswith high accuracy.It should, however,be mentioned
that the error analysisfor Padéapproximantsis unfortunatelynot alwaysanexact science,andanaive
approachcan misleadthe most careful investigator.

Padétechniquesallow one to study the behavior of the renormalizedquartic coupling AR as the
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critical surfaceis approached.By analogywith statisticalmechanics,this approachto the critical surface
can beparameterizedby a temperatureT, which is assigneda value T~at thecritical surface.In general
(see,e.g.,refs. [1.51],[1.50],[2.30],and[4.21]),whenTis just abovethecritical valueTe, AR(T) scales
like

AR-~-(T— Tc)K~ln(T_ T~)~”. (4.14)

The power K can be written in termsof standardcritical exponents,

K7+dP2LI, (4.15)

wherey and v arerespectivelythe magneticsusceptibilityandcorrelationlengthindices,and~1is the
“gap” exponent.

The fact [4.5] that AR is boundedas T—s. T implies that

K~7+dP2L1�0. (4.16)

(The strict equality K = 0 is often calleda “hyperscaling” relation.) Moreover, this reasoningimplies
that P mustbe lessthanor equalto zerowhenK vanishes.(Recall [1.50, 1.51] that therenormalization
group predictsK = 0, P = —1, i.e., that “logarithmic correctionsto hyperscalingexist”.) Only in the
casewhen K and P both vanish can the theory be nontrivial [2.30].A particularly impressiveseries
calculationfor 4’4 field theorywasperformedby Bakerand Kincaid [4.22] (seealso refs. [4.23,4.24]).
Theyobtainedhigh-temperatureseriesup to tenth orderandused them to estimatethe dimensionless
renormalizedcouplingconstant.A scaling law of the form (4.14) was assumed,subject to the (very
strong) constraint that P is equal to zero. These authors[4.21]found that K = 0.30±0.04, which is,
however,consistentwith triviality. For comparison,direct evaluationof high-temperatureseriesfor the
four-dimensionalIsing model(again assumingthat P vanishes)yields [4.25]K = 0.302±0.0038.

Otherauthorshavesubsequentlyreexaminedthesemodelsandhaveobtainedresultsconsistentwith
the renormalizationgroup predictionof triviality (K = 0, P = —1) for both pure 4’4 field theory [4.26]
and the Ising model [4.27] in four dimensions.It is thereforelikely that logarithmic correctionsto
scaling cannotbe neglecteda priori in eq. (4.14), and that the assumptionthat P vanishesintroduces
errors in the evaluationof K.

Triviality has alsobeenstudiedby the evaluationof theeffective potentialin a strongcouplingseries
([4.28], see also ref. [4.29]). Again, the conclusionsreachedareconsistentwith the idea that 4’4 field
theory is trivial in four dimensions.

4.3. Trying to escapethe trap of triviality: Thesearchfor loopholes

The importanceof the Higgs mechanismin modelsof elementaryparticleinteractionshasprovideda
rationalein questsfor a nontrivial 4’4 theory. It is probably fair to evaluatethe presentsituation by
sayingthat such endeavorsgenerallyshould still be consideredspeculations(albeit entertainingones).
Furtherideasin this spirit are also elaboratedupon in section5 and 3.2.6.

A remarkablephilosophycalledasymptotic safetyhasbeenadvancedby Weinberg[4.30]as a way to
evadethe obloquy often associatedwith trivial or evennonrenormalizablefield theories(like quantum
gravity). He pointsout that in a (cutoff) field theory it is necessaryto havea rationalefor constructinga
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uniquemodelwith trivial and!or nonrenormalizableinteractions.For instance,it is insufficient to argue
that nonrenormalizableinteractions must be eliminated from a field theory becausetheir presence
requires that an infinite number of parametersbe evoked.The point is that the attendantlogical
prodigality can be rectified by, e.g., demandingthat all free parametersin the theory equalunity at a
given momentumscale.

Ratherthan imposingsuch a condition ex post facto upon a theory,it is better to have the theory
itself produceconditions for consistency.Asymptotic safety gives such a promise—it is simply the
requirementthat the renormalizationgrouptrajectoriesstrike a fixed point in the limit of large cutoff
A—+ ~. In all cases consideredin ref. [4.30], there are a finite number of “ultraviolet-attractive”
eigenvaluesat sucha fixed point. Therefore,althougha cutoff field theory can havean infinite number
of parameters(correspondingto trivial and/or nonrenormalizableinteractions),the principle of
asymptoticsafetyimposesan infinite numberof constraints.A finite numberof independentparameters
then remains.It is arguedthat this principle may thus explain or even replace renormalizability (and
ipso facto nontriviality) as a criterion for field theories.See also sections1 and 5.

Otherattemptsto constructa nontrivial 4’4 theory areoften abit moreabstractin nature. Rigorous
discussionsof triviality (seesection2) often requirethat a 4’4 field theory is definedasan infinite-cutoff
limit of aferromagneticlattice theory.It hasbeenargued[4.31] that thisis an asumptionwhoseremoval
changesthe natureof the problemdramatically.Indeed,no argumentappearsto preventthe existence
of an interestingnontrivial ultraviolet limit of an antiferromagneticlattice4’4 theory,evenin d >4. This
remainsan interestingopenproblem.

Another possibleroute for avoiding triviality is the so-called“scale-covariantfield theory” [4.32].
The startingpoint of the approachis the observationthat in certainquantumsystemsthe presenceof an
infinitesimal perturbationcan causea discontinuouschangein the eigenfunctionsandeigenvalues.Thus
the free field solutionsarenot obtainedin the limit of avanishingperturbation(seealsoref. [4.33]for a
discussionof this phenomenonin path integrals). Instead,a “pseudo-free”solution is reached.It is
argued[4.32] thatnonasymptoticallyfree theorieshavethesepseudo-freesolutionsandthat perturba-
live expansionsought to be carriedout about thesesolutions.

An ideawhich is suggestedby the pseudo-freesolutionto the “independentvaluemodel” [4.32]is
that it maybe appropriateto replacethe pathintegral measurefl~d4’(x) by

dçb(x) (4.17)

x

in the definition of a scalarfield theory. When the (classically invisible) parameterB equalsone, the
measureis locally invariantunderthe scaletransformationØ(x)—s- s(x)4’(x). For certainvaluesof the
parameterB, the 0(N)-symmetric4’4 modeldefinedwith the measure(4.17) is nontrivial [4.34].Early
numericalwork [4.32]suggestedthat scale-covariant4’4 theoryis trivial, but subsequentwork disagreed
with this conclusion[4.35].

It hasalso beennoted [4.36]that by the useof an unconventionallattice regularizationschemein
which irrelevant “phantom field interactions” (such as 4’6 4,8 etc.) are included in the action, a
nontrivial 4,4 theory can be generated.Alternatively [4.37], a variational constraintcan be applied to
give an unusual“precarious”theory.Otherapproacheshavealso beentried [4.38—4.42].It is probably
fair to say that suchideas,although interesting,do not necessarilylead to a viable alternativeto the
canonicalstandardmodel. Time will tell.
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5. Relevancefor high-energy physics: Can elementary scalar particles exist?

5.1. Triviality of Higgs fieldscoupledto other theories

The study of triviality in pure 4,4 theory, as discussedin the precedingsections,is an interesting
abstractproblem. The question of whetherscalarfields coupledto gaugetheoriesare nontrivial is of
paramountimportanceto our understandingof the weak interaction,for greateffort is beingexpended
in experimentalsearchesfor Higgs particles. Indeed,it can be arguedthat the questionof the existence
of Higgs particlesis presentlythe greatestunresolvedmysteryin elementaryparticlephysics,sincethey
are at the heartof the standardmodel of the weak interaction.

As suggestedby the discussionin the first section,if atheory is completelyasymptoticallyfree (i.e.,
asymptoticallyfree in all coupling constants), then it is almost certainly a nontrivial theory. Simple
calculationsare sufficient to showthat (at leastin perturbationtheory) completelyasymptoticallyfree
theoriesdo exist; thesearereviewedin subsection5.2. Unfortunately,“realistic” modelstheoriesof the
weak interactionarenot completelyasymptoticallyfree in general.With the exceptionof the so-called
“eigenvalue”theories(reviewedin subsection5.3) it seemsthat at leastone couplingconstantmustbe
asymptoticallynonfree in order to producea realistic theory. Such a theory may still possessan
ultraviolet-stablefixed point at valuesof the couplingconstantsfor which perturbationtheorydoesnot
well approximateits beta functions. It is for this situationthat Monte Carlo renormalizationgroup
techniqueswere developedand applied to the standardmodelof the weak interaction.Thesemethods
and the resultstheyproduceare reviewedin subsection5.4. Finally it is worth askingthe questionof
what may be learned by considering the standardmodel as a low-energy effective theory. This
viewpoint is discussedin subsection5.5.

5.2. Completeasymptoticfreedomin theorieswith Higgs particles andgaugefields

Given the likelihood of the triviality of pure 4,4 field theory in four dimensions, it may come as a
surprisethat perturbativeultraviolet fixed points do exist in four-dimensional theorieswith Higgs
scalars,implying that at leastsomeHiggs theoriesare nontrivial. At the presenttime the only fixed
pointswhich havebeenfound in the domainof validity of perturbationtheoryarethosefor which the
theory is “completely” asymptoticallyfree, i.e. asymptoticallyfree in all couplings. It is not known
whetherfixed pointswith couplingssmallenoughfor perturbationtheory to be valid alsoexist,although
thereis no knownreasonwhy such theoriesshouldnot alsoexist.Thus in the next sectionsthe focusis
upon the phenomenonof asymptoticfreedomin theorieswith elementaryscalars.

Asymptoticfreedomin non-Abeliangaugetheorieswas first discoveredby severalauthors[5.1].This
remarkablephenomenonhadbeenanticipated[5.2] in modelsof the stronginteractionbasedupon the
observationof Bjorken scalingin deep-inelasticelectroproductionexperimentsat SLAC. Subsequently
[5.3] it was shown that no renormalizabletheory can be asymptoticallyfree in perturbationtheory
without the introductionof non-Abeliangaugefields.

The propertyof completeasymptoticfreedomin systemswith Higgs particlescoupledto gaugefields
was thendiscovered[5.4] andshown to exist in a numberof theories[5.5], including supersymmetric
field theories[5.6]. Completeasymptoticfreedomin systemswhichalsoincludefermionscoupledto the
scalarshas alsobeenfound [5.7]. This last caseleadsto the “eigenvalue” theoriesdiscussedin the next
subsection.

In all cases,thesetheorieswere discoveredby looking for systemsin which all of the running
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couplingconstantsof the theoryapproacha fixed-pointvalueas the renormalizationpoint is decreased
(i.e., as the “momentumtransfer” increaseswithout bound).The input requiredfor suchcomputations
is the set of betafunctionsfor all couplingsin thetheory.The evolutionequationsfor a generaltheory
involving scalars,spin-i fermions,and vectorgaugefields aregiven in ref. [5.5]to one-looporder,and
in ref. [5.8] to two-loop order. The latter referencesalso contain an extensivereview of numerous
higher-loopcalculationsof other quantities.A somewhatgeneralmethod for locating fixed pointsin
perturbativebetafunctionsis given in ref. [5.91.It hasalsobeensuggested[5.10] that if the barequartic
couplingconstantof a theoryvanishes,an asymptoticallyfree theory may result.

Beforeexaminingthe phenomenonof completeasymptoticfreedomin specifictheoriesit is usefulto
list the beta functionsfor the most general renormalizabletheory constructedfrom hermitian gauge
fields A, real scalar fields 4,~, and spin- ~fields ~/‘a~ By assumptionthis theory is locally gaugeinvariant
under somesimple compactLie group G with structureconstantsC”~. The Lagrangedensityof the
theory is given by

L = — ~F~VF~ + ~(D~4,)1(D~’cb)~+ ~/Jy”D~J— çbm0~/i— ~/ih~i/i4,~— V(4’), (5.1)

whereV(4’) is a quarticpolynomial in 4,,

V(4,) = ~ f,fkl

4’,4’,4’k4’l + lower order terms, (5.2)

andwhere

— ~A — gCa AbAC , (5.3a)

(D~4’)~ o.~4,, + ig0~,4,,A~, (5.3b)

(D~)
0 ~9p.’I’a+ igt~~Ii~A~- (5.3c)

The beta functionsof the theorydescribethe responseof the variouscouplingsin the theorywhen
the renormalizationpoint p. at which the couplingsaredefinedis changedto p.e~‘. The equationsapply
in the deepEuclideanregion whereall dimensionfulinteractions(masstermsand superrenormalizable
interactions)are ignored. The couplingsare defined by the requirementthat they are equal to the
couplingswhich appearin the Lagrangian,definedatthe symmetricpointsp

2 = —p.2. To one-looporder
thesebeta functionsare gauge independent[5.11]and are given by [5.5]

16IT2 = —[~S

1(G) — ~S3(F)— ~S3(S)] — ~b0g’ 16IT
2/3g~ (5.4a)

16IT2 = 2hmhihm + ~(hmhmhi+ hihmhm)+ 2Tr(hjhm)hm— 3[2tah~ta+ S
2(F)h~]g

2

+ 2 f~klfiklmhm 16~2/3~, (5.4b)

16IT2 fijmnfmnkt +fj~~flf~fljt +fjtmnfmnjk — 12S
2(G)g

2f~J~
1

+ 3A1J~1g
4+ 8 Tr(hjhm) fmjkl — l2H

1Jkl 16IT
213f, (5.4c)
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where

ab ab ab ab ab ab ab — a b
AtIk, — a,1 akl + alk a1, + a11 alk , a0 = {0 , 0 },~, (5.5)

and

H,Jkl Tr[h,hJ{hk, h1) + h,hk{hJ,h,} + h,h,{h1, hk)], (5.6)

with

(t”t”),1 S2(F)~,1 , (0a0a)~~S2(S)3,1

Tr(tatb) S,(F)ô~, Tr(000b) S3(S)6~. (5.7)

Equations (5.7) define constants~ ~2’ and S3 which dependonly upon the group (G) and the
respectiverepresentationsof the fermions (F) and scalars(5). The fact that the tensorfiJkt is totally
symmetrichasalso beenused.Shifting the scalarfields to havevanishingvacuumexpectationvalues
and give massesto the gaugeparticles and fermions only affects superrenormalizableterms in the
Lagrangian.The renormalizationgroupequationsare thusunaffectedby the presenceof spontaneous
symmetrybreaking. (More generally,it hasbeenshown [5.12]that if a theoryexhibitsboth complete
asymptoticfreedomandspontaneoussymmetrybreaking,the Green’sfunctionsin the deepEuclidean
region are the sameas thoseof the symmetrictheory.)

Someintuition for the natureof the solutionsof theseequationscanbe developedby theexploration
of specific examples.Consider(following ref. [5.5]) the caseof an 0(N) gaugetheory interestingonly
with a single fundamental(i.e. vector) representationscalar.The mostgeneral0(N)-invariantquartic
couplingcan be written [cf. eq. (5.2)]

V(q5) = ~A(4’. 4’)2 (5.8)

The renormalizationgroup equationsfor A andg
2 are

16IT2 ~ =(N+8)A2 —3(N—1)g2A+~(N—1)g4, (5.9a)

16IT2 d(g2) = —b
0(g

2)2, (5.9b)

with the initial conditionsA(t = 0) AR, g2(t = 0) g~. It is natural to definenew variables

N+8 2 A
ds~ 2 g dt, ~ (5.10)

l6IT g

so that (imposingthe conditionthat s vanishes when t does)

eE~_1 (g~(N+8)\
e ~ 16IT2 ,it~ (5.lla)
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g2=g~e~, (5.llb)

~ (5.llc)

with

e~b
0/(N+8). (5.lld)

Solutionsof eqs. (5.11) exist for which both A and g
2 areasymptoticallyfree, i.e., whereA and g2

approachzeroas t (and therefores) increaseswithoutbound. In order to producethis behaviorb
0 must

bepositive andthe roots ~± must be real. It is thus mostadvantageousto chooseb0 as smallas possible
(while remainingpositive). This can be accomplishedby addingfermions to the theory.The resultsdo
not changesignificantly if b0 is set to zero. The requirementthat the roots ~. be real then forcesthe
discriminant of the quadraticequation(5.lld) to be positive,

3(N — 1)(2N — 11)>0. (5.12a)

Assumethat eq. (5.12a)holds, andchoose~÷ to be the largerof the two roots~. Thenas t increases

without bound,eq. (5.llc) implies that
if~<~ (5.12b)

~ if~=~.

[Notethat correctionsto eq. (5.12b) areof higherorder in g
2, andthuspresumablyvanishin the limit of

large t.] The fact that ~= A !g2 approachesa fixed ratio in this limit implies that A andg2 are both
asymptoticallyfree if ‘R ~ ~ and b

0 >0; andthus the theory is presumablynontrivial.
It is interestingto notethat if the “spontaneously”generatedmassof the gaugebosonsis denotedby

m~and the mass of the scalarparticle is denotedby m~,eqs. (5.12b) imply the bound [5.13,5.14]

(m11/m~)
2 ~ (5.13)

(again, to lowest order in the loop expansion).Equation(5.13) assumesthat no further fixed point
exists. Upper boundson the massesof Higgs particles in more general theoriesmay arisefrom the
requirementof a nontrivial Higgs sectorandarediscussedin subsection5.5. The analysisleadingto eq.
(5.13) suggeststhat gaugefields can rescuea pure 4,4 theory from triviality, andthat the requirement
that the full theory be nontrivial maygenerateexperimentalpredictions.

What is the group structureof modelswith completeasymptotic freedom?From eq. (5.12a), it
follows that N must be at leastsix for completeperturbativeasymptoticfreedomto occur. Yet in an
0(N) gaugetheory a single fundamentalrepresentationscalarbreaksthe gaugesymmetryonly from
0(N) to O(N — 1), so that only in an 0(2) gaugemodel is the symmetrybrokencompletely.For this
exampleof an 0(N) gaugetheory,the smallestgroupwhich can be completelyasymptoticallyfree is
0(6). The gaugegroup is spontaneouslybroken to 0(5) [5.5] and there arestill ten masslessgauge
particlescorrespondingto the generationof the remainingnon-A belian 0(5) group.

This observationseemsto be part of ageneralpattern—ifthe theory is completelyasymptotically
free,therearea largenumberof masslessgaugebosonspresent,correspondingto a large non-Abelian
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subgroupwhich remainsunbroken.Exceptionsto this rule includethe “eigenvalue” theoriesdiscussed
in the next subsection,in which every renormalizedcoupling in theory is determined,and in which
completeasymptoticfreedomand completespontaneoussymmetrybreakingcan coexist.

Furtherexamplesare useful in order to makethis behaviorexplicit. A more generalcaseof the
abovetheoryoccurswhenan 0(N) gaugetheory is coupledto Mdifferent fundamentalrepresentation
scalars.The minimumcritical valuefor completeasymptoticfreedomin an 0(N) gaugemodel,N~(M),
is given in Table 5.1 as a functionof M. Note that in eachcasethe 0(N) gaugesymmetry is brokento
0(N — M). For largeN, completeasymptoticfreedomoccursfor M< N — 1 N. Thusagain it is seen
that thesetwo phenomenaaregenerallyincompatiblewith oneanother.Nor does the patternseemto
changeif [5.5] second-ranktensorrepresentationsof Higgs fields are used(table 5.2), or if [5.11,5.5]
the gauge group is SU(N) (tables 5.3, 5.4). In all casesthe Higgs mechanismfails to removethe
infrared singularities,and in no caseis the gaugegroupbrokendown to an ultraviolet-stableAbelian
symmetry.Moreover,the situationbecomesprogressivelyworsefor scalarsin higher grouprepresenta-
tions, since [5.5] the contributionsS

1(G) to the runninggaugecoupling(5.4a)havethe right sign and
areproportionalto N for both 0(N) and SU(N),while the scalarcontributionsS3(S) havethe wrong
sign and areproportional to N”~for scalarsbelonging to kth rank tensorrepresentations.Thus for
large enoughN, a tensorhigher thanthe secondrank ultimately must destabilizethe gaugecoupling
andpreventcompleteasymptoticfreedom.

In order to form a completemodelof the weak interaction,it is necessaryto considerthe effectsof
Yukawacouplings.Thesecouplingsaregenerallydrivento zeroat leastasfastasthe gaugecouplingsat
a fixed point wherecompleteasymptoticfreedomoccurs.Thus the hf

2 terms in the evolution equation
(5.4b) can be dropped.This behaviorcan be seen [5.5] from the evolution equationsin a casewhere
only a single Yukawacoupling is present,

16ir2 = Ah3 — Bg2h, (5.14)

whereA and B are positive constantswhich dependupon group-theoreticfactors. If a new variable
h h/g is defined,then eqs. (5.14) and (5.4a)imply that

(5.15)

Table 5.1
Minimum value N~for complete asymptoticfreedom in an
0(N) gaugetheorywith M fundamentalrepresentationHiggs

particles

M N Symmetry breaking . . Table 5.2
_________________________________________________________ Minimum value N~for complete asymptotic freedom in an 0(N)
1 6 0(N)—~O(N— 1) gaugetheory coupledto tensor representationHiggs particles
2 7 O(N)—*0(N—2)
3 7 o(N)—~0(N—3) Representation N~
4 8 0(N) —~0(N — 4) Antisymmetricsecond-ranktensor 8
5 9 0(N)—* 0(N —5) Antisymmetric second-ranktensor
6 10 0(N)—~0(N —6) + fundamentalscalar 9
7 11 O(N)—~0(N —7) Symmetricsecond-ranktensor 14
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Table 5.3
Minimum valueN~for completeasymptoticfreedomin an SU(N)
gauge theorywith M fundamentalrepresentationHiggs particles

M N~ Symmetry breaking Table 5.4

1 3 SU(N)—* SU(N— 1) Minimum value N~for complete asymptotic freedomin an
2 4 SU(N)—~SU(N— 2) SU(N) gauge theory coupledto tensor representationHiggs
3 5 SU(N)—~SU(N—3) particles
4 6 SU(N)—aSU(N—4)
5 7 SU(N)—~SU(N 5) Representation N~
6 8 SU(N)—+SU(N—6) Adjoint 6
7 10 SU(N)—~SU(N—7) Adjoint+fundamental 7
8 11 SU(N)—+SU(N—8) Symmetrictensor 9

The fixed point at h equalto zero is ultraviolet stable, so h(t) vanishesfaster thang(t) for large t,
provided that

B>b0, h~<(B—bØ)g
2~. (5.16)

The conditionseqs. (5.16) are easily enoughsatisfied,and imply that the Yukawa couplings can be
neglectedin the considerationof theorieswhich arecompletelyasymptoticallyfree,providedthat the
Yukawacouplingsare not too large.

A secondpossibility is that

h~=(B—b
0)g~, (5.17a)

in which case

dh/dt=0. (5.17b)

Specificsolutions[of the generalform eqs. (5.17)] do in fact exist in coupledsystemsinvolving gauge,
quartic,andYukawacouplings.These“eigenvalue”solutions(discussedin the nextsubsection)require
that specific relationsexist betweenall renormalizedcouplingsin the theory.

5.3. Eigenvalue conditions for asymptotic freedom in models of the weak interaction

Probably the simplest example of a theory whose coupling constantshave evolution equations
possessing[5.7] an “eigenvalue” solution for asymptoticfreedomis the Georgi—Glashowmodelof the
weak interaction[5.15].In this model the electronand its neutrinoarecombinedwith two new heavy
particles:a chargedlepton, E~,and an unchargedlepton, X°,to makeleft- and right-handedS0(3)
triplets. Similarly, heavy leptonsM + and Y° are addedto makemuon triplets. This model possesses
only two chargedweak gaugefields (denotedW) and the electromagneticgaugefield A~. Since it
thereforefails to accountfor neutralweak leptoniccurrents, it is not a viable candidatefor a realistic
model of the weak interaction. Nevertheless,it doesprovide an exampleof the idea of eigenvalue
conditionsfor asymptoticfreedom.

Definethe quarticcouplingconstantA by an interactionLagrangedensity for the scalarfield,



DIE. Cal/away, Triviality pursuit 297

L(4’)=—~4’~. (5.18)

Denotethe vacuum expectationvalue of the scalar field by v, and the i.~—X0mixing angleby °e~

Similarly, define 0~to be the correspondingmuonic mixing angle. Then four Yukawa couplings
(h1, h2, H1, H2) can be definedin termsof particle massesby

mE÷— me- = 2vh1, (5.19a)

mxo=_~2~~, (5.19b)

— m1~-= 2vH1 , (5.19c)

m~o=h12t’ - (5.19d)

The lowest-orderequationsfor the evolutionof the couplingsare then given by [5.7]

16IT
2 dg2 = —b

0g
4 = —[~ — ~6(2)~ ~(1)]g4= —~g4, (5.20a)

16ir2 = 16h~+ 4h~(2H~+ H~)+ h~h~— 24g2h~, (5.20b)

16IT2 = 12h~+ 4h~(2H~+ H~)+ 2h~h~— 12g2h~, (5.20c)

dO dO
(5.20d)

16IT2 = ~ A2 + (16h~+ 8h~+ 16H~+ 8H~— 24g2)A+ 72g4— 96(h~+ H~)— 48(h~+ H~).
(5.20e)

The equations for H~ and H~ are obtained from eqs. (5.20b) and (5.20c) by p.—e symmetry.
Asymptotically free eigenvaluesolutionsexist for which

h~=k
1g

2, H~=K
1g

2, A=Ag2 (5.21)

h~=k
2g

2, H~=K
2g

2,

and k
1, k2, K1, K2, andA arenumericalconstants.Onesolution is [5.7]

k1=K, =(324—11b0)/334, k2=K2=(34—7b0)/167, (5.22a,b)

while the constantA is given by the positive root of the quadratic

~A
2 +(32K

1 + 16K2 —24+ b0)A— (192K~+96K2—72)=0. (5.22c)
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Equation (5.22c) possessessuch a positive root provided that 192K~+ 96K2> 72, which is amply
satisfiedin a purely leptonic theory.Correctionsto eqs. (5.22)can beexpressedas a powerseriesin g

2
[5.7],

h2 = K~°~g2+ K’~g4 + K’2~g6+.... . (5.23)

The solution (5.22) of the evolution equationshas the property that all of the renormalized
parametersof the theoryaredeterminedfrom two constants,which can be adjustedto fit experimental
data. In the Georgi—Glashowmodel, ~—esymmetryis strictly observed.It is thereforeappropriateto
use as input an “average” mass for me = m~= 0.053GeV. If the gauge coupling gR g(t = 0) is
identified with the electromagneticcouplingconstant,the “physical” predictions[5.7]

m~o= m~o=3.34GeV/c2, mw+ =3.58GeV/c2, 0=0.0669(1—0.001/0.97),

m~+= m~+= 6.64GeV/c2, AR 3.52g~, (5.24)

aregenerated.Note that heavyleptonswith massesof the orderof magnitudeof the W are predicted.
The existenceof heavy leptonsis a typical featureof eigenvaluetheories.

It is important to point out that othereigenvaluesolutionsto the evolution equationsalso exist.
These solutionshavezero eigenvalues,and aregiven by [5.7]

(I) k
1 = = 1 — b0/24, k2 = K2 = 0, (5.25a)

(II) k1 = ~ —~b0, K1 =(240—11b0)/236, k2=0, K2=(24—7b0)/118,

(III) k1 =0, K1 = (2268— 77b0)/1491, k2 = (4032—413b0)/1491, (5.25b)

K2 = (180— 14b0)/213. (5.25c)

[Two othersolutionsexist, which are Ii*-~emirror imagesof (II) and (III).] These solutionspredict
unphysical behavior [e.g. (III) implies that the heavy lepton E~is degeneratein mass with the
electron].Moreover, solutions exist for which h~!g

2 approaches a constant but h~/g2 vanisheslike a
powerof g2 wheng2 approaches zero [5.7]. However, no ultraviolet-stable solutions of the form (5.11)

exist—in all casesperturbative asymptoticfreedom occurs only when certain relationsbetweenthe
renormalizedcouplingsof the theoryhold. The “eigenvalue”fixed pointsarethusultraviolet unstable—
small perturbations in the parameters k

1, k2, K1, andK2 movethe theory awayfrom the fixed point. It
is not knownwhetherother(nonasymptoticallyfree) fixed pointsexist. If theydo not, thenthis theory
providesanexampleof a casein which the requirementof anontrivial theory allows oneto predictthe
massesof variousparticles.

The Georgi—GlashowS0(3)model is not the only theory for which sucheigenvalueconditionsexist.
Eigenvaluerelationsfor completeasymptoticfreedomhavealso beenderivedin theorieswhosegauge
symmetry group is SU(2) [5.16], SU(3) [5.17], SU(2)x SU(2)X SU(4) [5.18],SU(S) [5.19], SO(N)
[5.20], and E6 [5.21].Thus it can be seenthat the ideaof eigenvaluesolutionsat a fixed point is quite
general.

The discussionin the abovetwo subsectionsmakesit clear that gaugefields maywell turn a trivial
pure 4,4 field theory into a nontrivial coupledsystem.Ultraviolet-stablefixed points[like thosein eq.
(5.11)], and ultraviolet-unstable(eigenvalue)fixed pointscan appearin coupledsystems,eventhough
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none existed in the pure scalar theory. Since thesefixed points correspondto asymptoticallyfree
theories,the dynamicsof the systemcan be analysedperturbatively.

In order for a field theory to be asymptoticallyfree in perturbationtheory,non-Abeliangaugefields
mustbe present[5.3]. This statementis an oft quotedresult, but implicitly assumesthat the quartic
self-couplingf1/kl in eq. (5.4c) is a positive-definitetensorsuch that the energyspectrumis bounded
from below. This requirementis lessobviousin a systemwhereotherfields arecoupledto the scalars
[5.22]. Argumentsbasedupon therenormalizationgroup, however,do suggestthat suchaconstraintis
needed[5.23].

As discussedabove, completespontaneoussymmetry breaking (where the remaining unbroken
subgroupis Abelian) is not in generalconsistentwith completeasymptoticfreedom.Realisticmodelsof
the weak interactionthereforegenerallyrequireatleast onecouplingconstantto benot asymptotically
free.In order to determinewhetheror not suchatheory is nontrivial, a computationalframeworkmust
be developedwhich is independentof perturbationtheory. One viable schemeis provided by the
applicationof the renormalizationgroupto latticegaugetheories,andis discussedin detail in the next
subsection.

5.4. Nonperturbativerenormalizationgroup analysisof the standardmodel: Is the Higgs
masspredictable?

In the last subsectionit hasbeenpointedout that the studyof triviality in theorieslike the standard
model (where at least one coupling is not asymptotically free) requiresnonperturbativemethods.
Lattice gaugetheory [5.24—5.26]providesa frameworkfor suchan analysis,sincethe ultraviolet cutoff
(the latticespacing)is definedindependentlyof perturbationtheory.References[5.24—5.32]reviewthe
tenetsof the discipline, while ref. [5.33]presentsan introductionto the subjectfor nonspecialists.

To theselattice gauge theories, it is possible to apply the Monte Carlo renormalizationgroup
([3.23, 3.2], also reviewedin section3). The basic idea is that in a lattice gaugetheorya continuum
limit requiresa divergentcorrelationlength(i.e. a vanishinglattice spacing)andthusmust occur(if at
all) at a phasetransitionof secondor higher order. Any continuum limit thereforelies on a critical
surface.Thus ananalysisof theselimits is a studyin critical phenomena,for which this renormalization
groupwas developed(seesection3).

Recallthat in this renormalizationgroupthe original systemis divided up into “blocks” or groupsof
variables. This new “block” systemis governedby an action defined by a set of block coupling
constants{K’}, just as the original actionis definedby asetof couplings{K). As the systemis blocked
repeatedly,a setof “flows” {K}—~ {K’}—~{K”}—÷”. is mappedout for all {K}. If the starting {K}

are on a critical surface,the block couplings{ K’ } will also be on a critical surface,since under the
blocking transformation(by a linear scalefactor b)

{K}—sRb[{K}] = {K’} (5.26a)

andthe dimensionlesscorrelationlength ~ scalesaccordingto

b~{K’} = ~{K}. (5.26b)

Thus if ~ is infinite, it will remainso under a blocking transformation.
As the blocking transformationis applied repeatedly,the degreesof freedomof the systemare
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progressivelyintegratedout, and the coupling constantstypically flow towardsfixed points. At such
fixed points, {K’} = {K} = {K*}, andso by eq. (5.26b)the dimensionlesscorrelationlength~ is either
infinite or zero. From the flows in the neighborhoodof a critical fixed point (specifically from the
eigenvaluesof the derivative matrix Dab ~K~!ôKb) the anomalousdimensionsof the field theories
definedon thecritical surfaceassociatedwith the fixed point can be determined.A trivial theoryshould
havevanishinganomalousdimensions.

A secondimportantpoint is that (asdiscussedin section3) thenumberof relevant parametersfor the
continuum theoriesassociatedwith a given fixed point is equal to the number of its independent
renormalizedcouplings.Here, the word “relevant” refers to the number of directionsin which the
renormalizationgroup trajectoriesflow away from the fixed point. Thus if the numberof relevant
couplingsfor a fixed point is lessthan the numberof renormalizedcouplingconstants(i.e., if at least
onedirectionis irrelevant) then one or more of theserenormalizedcouplingsin the continuumtheory
can be calculatedfrom the others.

This quantum“parameterreduction” [5.13]occursin the pure 4,4 caseat the gaussianfixed point,
wherethe quartic couplingconstantis irrelevant and thuscalculable(in this caseit is zero). Another
exampleof thephenomenonof a “measure-zero”fixed pointoccursin the eigenvaluetheoriesdiscussed
in the last section.Moreover,if a nontrivial continuumlimit of the latticestandardmodel existsandif
(asis predictedby universality) the quarticcouplingis irrelevantat this fixed point, the standard model
Higgs mass can be predictedfrom the otherparametersofthe theory.

5.4.1. The lattice standardmodel
An importantconsiderationin the analysisof the nonperturbativerenormalizationgroupstructureof

the weak interaction is the definition of the lattice standardmodel. The version discussedhere
[5.34,5.35] is the simplestformulation in the tradition of Wilson [5.24]. Furtheranalysesof the full
standardmodel using other lattice formulationsshould clearly be performed(see refs. [5.36] in this
regard).

In the lattice standardmodelconsideredhere,the fermionic sectorof the model is neglected.This
simplification may be impossible to avoid, for the inclusion of chiral fermions in a lattice theory is an
extraordinarily difficult problem [5.36, 5.29]. If only light fermions are considered,however, the
associatedYukawacouplingsarequite small (e.g., —i~~for the electron)andare arguablynegligible.
Fermionswhosemassesareanappreciablefraction of the —200GeV massscaleof the weakinteraction
mayrequirefurther consideration.

The bosonic sector of the lattice standardmodel can be defined by the partition function (the
vacuum-to-vacuumtransitionamplitude)[5.34],

z f [FTdU][1J dV][fl d~P~][fld~)]eat, (5.27a)

where

~var = ~ + /32~2+ ‘~v+
5H’ (5.27b)

S
1(U)= ~ (1—ReUpiaq), (5.27c)

plaq

52(V) = ~ (1 — ~Tr Vpiaq), (5.27d)
plaq
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S~(U,V, cP)= ~ (5.27e)

SH(’1) = A~ (I~.~J’~— K)
2. (5.27f)

Here, Upiaq and Vpiaq denotepath-orderedproductsof links U,,.~andV,,.~definedin the fundamental
representationsof the groupsU(1) andSU(2), respectively.The links connectlattice site n to lattice
site n + p. (p. is a direction,n a latticecoordinate).Specifically,

Upiaq = UUU~U~ , ~ = VVV~V~ , (5.28)

where p. and v representorthogonaldirections. The sum refers to a sum over all such elementary
plaquettesin the lattice.

The link U,,.~can be written as a pure phase,

~ = exp(iO~~). (5.29a)

The Haarmeasurefor this compactLie groupis
IT

I dU~ I —~. (5.29b)
i ‘~ j 2IT

- IT

Similarly, the SU(2) links {V} can be parametrizedin termsof the 2 X 2 Pauli matriceso and the
identity matrix 1

V=a
01+a~u, (5.30)

wherea~is a four-componentobjectsatisfying the relation

~ (5.31a)

so that all V haveunit determinant.The Haarmeasurefor the group can then be written [5.37]

f dV~J~4 8(a
2 — 1).

The scalarfield I~is a complex (1~= ~, Y = 1) Higgs field associatedwith eachsite n,

(5.32)

The modeldefinedby eqs. (5.27)—(5.32)has[5.34]the correctformal continuumlimit of the standard
model, providedthat the definitions

/3
1=1!g~, /32—4!g~ (5.33)

are made,with g1 and g2 the barelattice gaugecoupling constantsfor the U(1) and SU(2) gauge
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groups,respectively.The coefficient of the 4’ ~4,term in the Lagrangedensityis —2AK(in units where
the lattice spacingis unity), with A the bare lattice quartic coupling.

It is useful to introduce the simplification of a fixed-length lattice scalarfield. This reduction is
equivalentto taking the limit of largeA in eqs. (5.27). Sincethe resulting(fixed-length) modelis in the
sameuniversalityclass as the variable-magnitudemodel, this simplificationshouldnot affect the critical
behaviorof the model. Following the rescaling~P—~Vk CP, the action is given by

S=I~~S~+/32S2+ KSL, (5.34a)

where

SL = ~ (5.34b)

subjectto the constraint

~ foralln. (5.34c)

This theorypossesses[5.34] threephases:
(1) a confined phase,in which the free energyrequiredto separateapair of testchargesincreases

without boundas the separationbetweenthem grows;
(2) an electrodynamics or “Coulomb” phase,whereinterparticle forcesbetweentestchargesobey

Coulomb’s law; and
(3) a “Higgs” phase,where spontaneoussymmetrybreakingoccurs.

5.4.2. The SU(2)—Higgs limit model
Before discussingthe structureof the renormalizationgroupflows of the full standardmodel, it is

worthwhile to exhibit the formalism in the simpler caseof the SU(2)—Higgs model. This model is the
limit of the fixed-length model describedby the action eqs. (5.34) in the limit where /3~increases
without bound (i.e., where the U(1) gauge coupling g1 approacheszero). It is a theory with only
elementaryscalarfields and SU(2) gaugefields, and is describedby an action

5su(2) = /3

2S2 + KSL, (5.35a)

where

SL—2~Re(~flVfl~Ifl+~), (5.35b)

with the other conventionsas establishedpreviously. This and related models have been studied
extensivelyby severalauthors[5.38—5.43].

The most relevantfeatureof a latticegaugetheory is its phasestructure,sincea divergentcorrelation
length (andthus a phasetransitionof secondor higher order)is requiredfor a continuumlimit. Some
interestingpropertiesof the phasestructureof this theory are known. First, in the large-/32 limit of
vanishingSU(2) gauge coupling, the theory becomes a nonlinear sigma model with 0(4) symmetry.
This model hasa phasetransitionat a critical couplingK~.
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The exact value of this critical coupling ic~is not known, but a rigorous lower bound is provided
[5.44] by the mean-fieldtheory estimate,

2K~/3~y�~, (5.36)

while a rigorousupperbound is given by [5.45, 5.34]

2K~= /3~.<0.622. (5.37)

Additionally, an expansionin powersof the inversecoordinationnumberq 1 (for a hypercubiclattice
q=8) yields [5.46,5.34]

c ..~ —62K~= /3~.= 0.6055+ O(q ), (5.38)

wherethe q5 term makes a fractional contributionof 5 X i0’. In eqs. (5.36)—(5.38)the connection
with the standardnotation /3~associatedwith the XYmodelhasbeenmadeexplicit.

The phasetransition itself is of secondorder,with ii = ~. Thus the anomalousdimension7,~,sof the
operator~ is zero (seesection3),

7,~22V10. (5.39)

The specific heat C(T) divergesweakly as [5.47]

log(log(T)), r (K — K~)/K~~. (5.40)

in the limit of small jT~.

Evidencefrom numericaland other approximatemethodssuggeststhat thereis a strong phase
transitionextendingfrom this point (labelled “G” in fig. 5.1) into the interior of the phasediagram
[5.38—5.43].This line of phasetransitionsendsat a critical point (labelled“M” in fig. 5.1). The orderof
this phasetransitionremainsan unknownandcontroversialissue,althoughit is probablyfair to saythat
it is a first-order transitionor possiblya very strongsecond-ordertransition.

Monte Carlo renormalizationgroup techniquesmust be applied to this model with some care in
order to generatea consistentflow diagram.The point is that most traditionalblockingprocedures(see,
e.g., ref. [5.48]) for gauge fields involve each original link in the definition of severalblock links.

__G

Fig. 5.1. Flow diagramof the SU(2)-Higgsmodel.
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Specifically, the most obvious blocking method is to make use of the fact that the sum of SU(2)
elements V differs from anotherSU(2) element by at most an overall normalization factor. This
serendipitysuggestsa definition of the block links of the form

V~= dew)’ (5.41)

where

1/Sum= ~ Vpath, (5.42)
path

and Vpath refersto an orderedproductof V’sbetweenthe two block sitesconnectedby V~. Thusthe
block link hasthe appropriatetransformationpropertiesundergaugerotations.

Unfortunatelywhen several pathsbetweentwo block points are thusaveraged,the result includes
eachoriginal link in severalblock links. Spuriousinteractionsaregeneratedbetweenblock links, which
leadto an inconsistentflow diagram[5.35,5.39,5.40].A solutionto this problemis to block with setsof
pathswhich arechosenso that each link is includedin only oneblock link [5.49].Expectationvaluesin
the blockedsystemcan alsobe definedas averagesover ensemblesof differentblocking schemes[5.40].
Thescalarfieldscan be blockedas well, by takingthe suitablynormalizedaverageof the original scalar
fields in the block, appropriatelyparallel transported[5.35,5.39].

After this blockingis complete,a new setof blockvariables{ ‘1’ ‘} and { V’} is definedfor a given set

of { cP } and {V}. If the original configurationsare generatedwith statisticalweight

e~ ~ DV DcPDI~ , (5.43)

where

e~’~’~’1=f DVD~~ Pe~, (5.44)

andP = P[{V’, ~‘}; {V, 1)] is the projectionoperatorwhich definesthe blocking transformation.The
requirementthat the partition function [cf. eq. (5.27a)] is preservedby the blocking imposesthe
constraint

JDV’D~’D~’P=1. (5.45)

The projectionoperatoris otherwisearbitrary.
The problemat this point is to calculate the block action S’{V’, 1’} given a set of configurations

which are generatedwith the weight (5.43). Various methodshavebeen proposedfor this general
problem[5.50,5.51, 5.39, 5.35, 5.40]. Onetechniquethat seemsparticularlywell-suitedto the present
problemmakesuseof a set of Schwinger—Dysonidentitiesin the block system[5.35,5.51].

The idea of this method for the extraction of the block action is to usethe principle of gauge
invarianceto generateconsistencyequationsinvolving variousblock couplingconstants.Considerthe
effect of infinitesimal SU(2) gaugerotationsR~on the block scalarand link variables,
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~ (5.46a)

REV~ = (1 + i~o-)V~ V~+ e ~ , (5.46b)

where 4 and~ are differential operators.Becausethe measureis gaugeinvariant, the following
identites hold in the block system4.

f DV’ D~’ D~’4~. [(4 A) e~(2)] = 0, (5.47a)

f DV’ D~~’D~’4~ [(4n~Bm)e~(2)] = 0,

wherethe Amand Bm aregauge-invariantfunctionalsof the { 1/’ } and { ‘~P‘}. The relationseqs. (5.47)
areexact in the block system,andyield an infinite set of identities. In particular,theAmandBm can be
chosenas an infinite orthogonalbasis set spanningthe spaceof all possibleblock actions,so that

S’{V, ~} ~ (c~A~+ dmBm), (5.48)

with the cm and dm denotingappropriatecouplingconstants.Then eqs. (5.47) can be usedto express
the Cm and dm in termsof expectationvaluesover the {V’, ‘k’} ensemble.Thus the completeset of
block couplings{c, d} which specifiesthe block action can be determined.

This taskwould be vastlysimplified if the block actionwere of the sameform asthe original action,

S~U(2){V’, ~‘} = f3~B0+ K’A0, A0 = SL{V’, ~‘}, B0 = S~{V’}. (5.49)

If eqs. (5.49) aresubstitutedinto eqs. (5.47), the resultis a two-by-two set of linearequations,from
which /3~and K’ can be calculatedin termsof expectationvaluesin the block system.Essentialto this
calculationis the assumptionthat the block actionis preciselyof the form eqs. (5.49). An alternative
point of view is to assumethat eqs. (5.49) are a good approximationto the block action, and then
simply define effective couplingsj3~and K’ by the combinationof eqs. (5.47) with eqs. (5.49).

This “maximal” truncationof the blockedactionto two couplingsmaybe a good approximationif
the blocking schemeis sufficiently comprehensive.However,it mustbepointedout that althoughsuch
approximationscan be systematicallyimprovedby the inclusionof moretermsin the block action, no
generalmethodfor the analysisof errorsgeneratedby this truncationis known. Clearly much more
work needsto be doneon the optimization of the blocking transformation[5.52].

Nevertheless,suchtruncatedcalculationsdo yield a simpleconceptualframeworkfor understanding
the nonperturbativestructureof quantumfield theory.This can be illustratedby consideringthe results
of such calculationsfor the SU(2)—Higgsmodel. Blocking transformationswith scalefactor b =

[5.40], b = 2 [5.39],andb = 3 [5.35]havebeenappliedto this model. In all cases,the flow diagramwas
of the qualitative form shownin fig. 5.1.

In thesesimulations,a fixed point Gappearsat infinite f~2andK K~,which presumablyallows only
a trivial continuumlimit [5.41—5.43].A separatrixGM of the flow lines extendsinto the interior of the
flow diagram,in accordwith the expectedline of phasetransitions.This closecorrespondencebetween
the flow and phasediagramsis reassuring,for such detailedagreement(unlike the casewith critical
exponents)is not guaranteedby universality. If this separatrixactually representsa phasetransition,
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then the point M at which it terminates must be a fixed point of the renormalizationgroup
transformation.This fixed point is marginal (y1 = 0) in the direction~ of theseparatrixconnectingit
to point G, sincethe renormalizationgroupflows go in the samedirection on both (±~p.1)sidesof the
fixed point. The critical exponenty2 which governs this phase transition can be determined by

measuringthe derivativesof the renormalizationgroup flows in the direction 6p.2 orthogonal to this
separatrix.If, for example,the separatrixdepicts a first-order phasetransition, then accordingto the
standardlore y2 equalsfour [5.53].The matrix of derivativesof the renormalizedcouplingswith respect
to the original couplings, ôK~!ôKb, haseigenvaluesb~’~and b)’2, where b is the scale factor of the
blocking transformation.Unfortunately,theseeigenvalueshaveyet to be directly measured.

Other inferencescan also be drawn from the topology of the flow diagram. For example, the
presenceof a marginal fixed point generallyimplies the existenceof logarithmiccorrectionsto scaling
(in this casealongthe separatrixMG) [5.35,5.47]. Shouldthe segmentMG turn out to be a line of
first-orderphasetransitions,it is unlikely that a continuumtheory can bedefinedthere(exceptpossibly
at the point M itself). Therefore,given the likelihood of that possibility, we return to the full lattice
standardmodel in searchof a continuumtheory.

5.4.3. Flow structureof the lattice standardmodel
The lattice standardmodel can be treatedby techniquessimilar to thoseusedin the SU(2)—Higgs

modeldiscussedabove.Many analyticalresults(including the phasediagram)for this modelhavebeen
reported[5.34,5.54]. One Monte Carlo renormalizationgroup study hasalso beenperformed[5.35].
Someof the resultsof theseanalyseswill now be described.

Like the SU(2)—Higgsstudiesdescribedabove,the renormalizationgroupflow structurepresented
here(in fig. 5.2) for thelatticestandardmodel is the resultof a maximally truncatedcalculation.A set
of threecoupledlinear equationsis generatedby using the invarianceof the integrationmeasureunder
infinitesimalgaugerotations,coupledwith the assumptionthat the block actionis well approximatedby
the functional form [cf. eq. (5.34)]

S’{U’, V’, c~’} = f3~S1{U’} + f3~S2{V’}+ K’SL{U’, 1/’, P’} - (5.50)

The equationsused to generatethe block renormalizedcouplingsare determinedfrom the SU(2)
invarianceof the integrationmeasure[cf. eqs. (5.46)],

KT/~~ -~~c ~

Fig. 5.2. Flow diagramof the lattice standardmodel.
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Tr 4~, . [(45’) e’] = 0, (5.51a)

Tr . ~ e~’] = 0, (5.51b)

and the U(1) invarianceof this measure,

Tr ~ [(~~s~)e~’]= 0, (5.51c)

wherethe definitions

U~~exp(iO~), Tr~JDUJDVfDcP~JDcP (5.52)

havebeenused.Equations(5.51) yield a coupledset of threeequationsfor the threeunknownblock
couplingsf3~,$~and K’.

The flow diagram generatedby such methodsis likely to be a crude approximationto the true
renormalizationgroup flow structureof the theory. It can, however,be a useful guide into unknown
territory, for the actuallocationof the continuumlimit of alatticetheory is not a priori obviousfrom its
phasestructure.Despitethe uncertaintiesinvolved, suchapreliminaryanalysiscan beuseful, if only to
produceaconjectureas to the location andnatureof the continuumlimit(s). Moreover,the conjecture
thusproducedcan be systematicallyimproved by the inclusion of more operatorsin the truncation
scheme.

Figure5.2showsthe phasestructureof this theory [5.34].Notethat therearethreephases(described
above), labelled “confinement”, “Coulomb”, and “Higgs”, respectively.The confinementphase is
distinct from the Coulomband Higgs phases,which are analytically connected.

The detailedflow structuregeneratedin the maximal truncation scheme[5.35], like the detailed
phasestructure[5.34],is quite complex.Thus only a surveyof the most importantfeaturesis presented
here.In particular,only two of the severaladditionalfixed pointswhich appearin the full theoryare
depictedin fig. 5.2. These are the two fixed points with the greatestnumber of relevantdirections
(labelled “C” and “T” in fig. 5.2).

Onesalientfeatureof the flow diagramis that no fixed point appearsatfinite I~2with three relevant
directions.Themost relevantfixed point at finite l~2’labelled“C” in fig. 5.2,hasonerelevantdirection
(essentiallyalongthe$~axis) andtwo marginal directions(essentiallyalongthe K and1~2axes).Shoulda
nontrivial quantumfield theory exist at this point, two of the renormalizedparametersof the theory
shouldbe bounded(recall from section3 that marginal directionsin generalcorrespondto boundson
couplings)and the remainingone unconstrained.

Anotherfixed point occursat infinite $2. This fixed point is labelled“T” in fig. 5.2. The valuesof K

andf3~arefinite at this fixed point. This combinationsuggeststhat a continuumtheory definedat this
point is asymptoticallyfreein the SU(2)gaugecoupling, i.e., is definedat zerog2 (infinite 132). This in
turn suggeststhat if a nontrivial quantumtheoryexists at this point, thenthe SU(2) gaugefields may
not be necessaryfor the theory to be nontrivial.

The efficacy of the renormalizationgroup is nowevident. The searchfor the most likely locationsin
the latticeparameterspacefor a continuumlimit for the theorycan be narrowedin scope.Moreover,
predictionscan be madeaboutthe numberandrangeof the independentrenormalizedcouplingsin the
continuum theory. Thus, for example, if (as is suggestedby the universalityhypothesis)the quartic
coupling constantis irrelevant at the fixed point thenone of the parametersof the theory (e.g. the
Higgs mass)can be predictedfrom the others[5.13,5.35].
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Severalimportantstudiesmust be done,however,before any firm conclusionscan be drawn. For
example, little is known about the variable-magnitudeSU(2) X U(1) lattice standardmodel [5.55].
Moreover,no comprehensiveanalysisof the effectsof variantor higher-representationlatticeactionsin
thismodelhasbeenmade[5.58].Furthercomputations(by the MonteCarlo renormalizationgroupor
othermethodslike finite-size scaling [5.57])areneededbeforethe critical exponentsof the theory can
beobtained.Theseexponentswould yield the anomalousdimensionsof variousoperators(like ~~2) in
the theory,andcould be used to learnwhethera nontrivial continuumlimit for the standardmodel is
possible.Much work thereforeremainsto be done,andthe fate of the standardmodelasa fundamental
theorystill remainsan open question.

5.5. The standard model as a low-energy effective theory: What if there is no fundamental Higgs particle?

The preceding subsectionhas made it clear that the standardmodel might be a trivial theory,
althoughthe issue is far from settled.Shouldthis triviality be demonstrable,it is fair to questionthe
whole idea of symmetry breakingby elementaryscalars,and, ipso facto, thenecessityof their existence.

Yet the conceptof spontaneoussymmetrybreakingby elementaryscalarHiggs particlesmaystill be
ametaphorof someutility in theoriesof the weak interaction.Evenif Higgs particlesdo not exist, it is
worthwhile to ask whether the standard model can be used as an effective phenomenological theory up
to a certaincutoff momentumscale.

Ideasof this naturearecertainlynot new. Theyareimplicit in earlyestimates[5.58]of upperbounds
on the massof the Higgs boson. These boundsare predicatedupon the assumptionthat tree-level
unitarity mustbe respectedunless“new physics” appearsor theweak interactionbecomes“strong” at
some scale. (The idea of a Higgs sector which is strongly interacting and relatedideashavebeen
consideredby severalauthors[5.59];however, this possibility maybe generallyinconsistentwith the
idea that a pureHiggs theory is trivial.)

The concept that the standardmodel is an effective theory, valid up to some scale at which
unspecified“new physics”appears,is rathervague,but gainscredencefrom awell-known “decoupling”
theorem[5.50].Accordingto this theorem,the physicaleffectsof high-massparticlesin renormalizable
field theoriesare unobservableat low energies.Various attemptsto estimatethe scale at which the
“new physics” appears(or, conversely,to boundstandardmodelparametersunderthe assumptionthat
no “new physics” appearsup to some specifiedlargemomentumscale) havebeenmade[5.61, 5.13,

5.62—5.66,5.41, 5.43]. A brief summaryof a few of theseideasis now made.

5.5.1. Upper bounds on the Higgs mass from triviality: General philosophy
The assumptionthat a pure 4,4 field theory is trivial can lead to bounds of phenomenological

relevance.Specifically, it is assumedthat the standardmodel is inconsistentasafundamentaltheorybut
is a good effective theory up to somemomentumscaleA. Then the demandthat the Landaughosts
predictedby naive perturbationtheorybeavoidedgeneratesrestrictionson the renormalizedcouplings
in the theory.

The simplestapproachis to assumethat gaugefields do not significantly modify the betafunction for
the quarticcoupling. From the discussionof subsection5.2, it is clear that this is a very strong(and
probably invalid) assumption,yet the results are conceptuallyquite clear. Considera pure ti field
theorydefinedby the Lagrangedensity

L~=~ ~m~~3— ~A0(~~)
2 , (5.53a)
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where P is the usual SU(2) complexdoublet.The beta function for this theory to one-looporder is

A2 (5.53b)
dt 2~

by the resultsof subsection5.2. The solution of eqs. (5.53) is given by

= -~--— —~--t (5.54a)

A(t) AR 2~2

where in terms of the running momentum scale Q and renormalizationpoint p.,

t=ln(Q!p.), (5.54b)

andAR is the renormalized(t = 0) quartic coupling. For a given AR the runningcouplingA(t) becomes
negativeat somescaleA. Thus A(AR) is the largest scale at which the theory makessense(in the
one-loopapproximation).Conversely,if A denotesthe largestmomentumscaleat which the theory is
still valid, then an upper bound on the renormalized quartic coupling AR is implied [5.62],

A ~ 1 (5.55)
R (3!21T2)ln(A/p.)

From the tree-levelresult for the ratio of Higgs massto Wmassin the standardmodel,

mH/mW = (8A~/g2)V2, (5.56)

an upperboundon the Higgs massis implied [5.62],

mH ~ mHmax = mw \/~ (ln A!p.)~2= 900GeV(ln A!p.)”2, (5.57)

which suggests a conservative upper bound of about 1 TeV for the Higgs boson mass, since A must be
largerthan mH.

Obviouslythebound (5.57) requiresin addition not only the assumptionthat the gaugeandYukawa
couplingsremainunimportantup to the scaleA, but alsotheassumptionthat higher-ordertermsin A in
the betafunction (5.53)arelikewise insignificant. This latter assumptionmaybe obviatedby numerical
simulationof a latticemodel, as was suggestedin ref. [5.62].Numericalsimulationsof this naturehave
recentlybeenperformed[5.63,5.43], andimply that renormalizedperturbationtheory givesessentially
the correct results,provided that the “cutoff” scaleA is reasonablylarge.

5.5.2. Upper bounds on the Higgs mass from coupled gauge—Higgs systems

As discussedin the abovesubsection,the addition of gaugefields can significantly changea pure4,4

theory.For example,a field theorywith gaugefields coupledto elementaryscalarscan be perturbative-
ly asymptoticallyfree in all couplingseventhough thepurescalartheory is not. Thus it is not surprising
that the addition of gauge fields can improve the bound eq. (5.57), as was pointed out in various
contexts [5.13, 5.64, 5.62]. These boundshave since been elaboratedupon by numerousauthors
[5.65—5.67, 5.41, 5.43].
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A generalpropertyof theseboundsis the observationthat the ratio A(t) /g~(t) (the running quartic
couplingto the runningsquaredU( 1) couplingconstant)shouldnot becomeunreasonablylargebefore
the momentumcutoff A is reached.This seemsto be a sensibleminimal conditionfor consistencyin a
theory,for, if thereis anenergyregimewherethe runningquarticcouplingA(t) is muchlargerthanthe
other couplings, a reasonable expectation is that the scalar sector will decouple from the rest of the
theory. It is then difficult to see how the theorycan escapetriviality (but see ref. [5.59]).

These bounds [5.13]improve noticeably when the top quark Yukawa coupling is also included (see,
e.g.,ref. [5.64]). These authorsidentify threecases:

CaseA. When the top quark massm~is lessthan80 GeV, the authorsof ref. [5.64] quoteanupper
bound mHmax on the Higgs massof about 125 GeV. Obviously this boundis remarkablylow.

Case B. When m~>80GeV, their boundson the Higgs massvary sharply with m~.The bounds
65 GeV< mH <122GeV for m5= 120 GeV and 140GeV< m11 <148GeV for m~= 150GeV are re-
ported.

CaseC. For m1 = 168 GeV, the largestvalue allowedin this scenario,m~ 175GeV. Note that this
value is a prediction, and not a bound.

The complexity and importance of this issue demandsthat full nonperturbativestudiesof the
problem be performed [5.35];neverthelessit is clear that the problem is interestingand worthy of
further analysis. It may even be that a fundamentalcutoff is requiredin the theory [5.66,5.68],
althoughsuch apronunciamentorequiresan understandingof the role of the axial anomaly[5.69]in a
cutoff theory. Naively, this anomalyvanisheswhen a cutoff is introduced [5.36], and implies, for
example,that the ‘rr

0 —* 2-y decayrate is zero. (A regularizationschemewhichrespectschiral symmetry
is assumedhere.)

Thus it can be seenthat,with the addition of certainspecific assumptions,the conjecturethat the
minimal standardmodel is a good effective model (but not a consistentfundamentaltheory) up to a
large momentum scale A implies a bound on the mass of the Higgs particle. Experimentalmeas-
urementsup to a massof aboutmHmax in this scenarioshouldthuseither find the Higgs particle,or
someunspecified“new physics”which causesthe formalismto break down.

6. Will Higgs particles ever be found?

“I would like to offer a theoreticalpredictionat the 5% confidencelevel: withinfiveyearsthere will
be a rigorous construction of the solutions of A(4,4)

4 and spin- ~ quantumelectrodynamicsin
four-dimensional space-time.”

Arthur S. Wightman (1977) [6.1]

“When we try to pick out anything by itself, we find it hitched to everythingelse in the universe.”

JohnMuir

Expectationsoften remainunfulfilled. Much of the earlyexcitementover the standardmodelof the
weak interactions was causedby the discovery that it was renormalizable,and hence could be
considereda viable candidatefor a fundamentaltheory of elementaryparticles.The standardmodel
was a remarkableachievement,for it includedthe lucus a non lucendo of massivegaugebosonsin a
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consistentfashion and so afforded a place for the mediatorsof the weak force, the W ± andZ°.The
standardmodelalsoposits the existenceof an unobservedelementaryscalarparticle, the Higgs boson.
The interactionsof this Higgs particle are a necessaryingredientin the standardmodel.

As discussedin sections 2—4 of this review, strongevidencesuggeststhat a theory which only
includesHiggs particles is “trivial” or noninteracting. Should this triviality persistwhen the Higgs is
“hitched to everythingelse” in the standardmodel,thenthe standardmodel scenariois in trouble. It
would thenbe fair to ask if a real “Higgs particle” shouldexist, or whetherthis putativeelementary
scalaris insteadjust aninvisible metaphorfor a morecomplicatedmechanism.The obviousquestionto
ask—whatthis new mechanismmaybe—isnot as obviously answerable.

A moreinformativesetof possibilitiesdoes,however,exist if theHiggs sectorof the standardmodel
(or indeedof anyrealistic Higgs model) is nontrivial. In this caseit is likely possibleto calculateupper
boundsupon the Higgs massor evento predict its value. Therequirementthat the theorybe nontrivial
thus can imply phenomenologicalconstraintson the theory (see section 5). By contrast, a naive
semiclassicalanalysisof the scalarsectorof the standardmodeldoes not yield any information on the
Higgs mass.

It is evidentthat the questionof the triviality of Higgs modelsis of morethanphilosophicalinterest.
The inquiry as to whetheranelementaryscalarparticleexists(andif its massis predictable)is alsogiven
immediacyby the contemporaryagendafor the constructionof new accelerators.The intendedpurpose
of thesemachinestypically includesa searchfor the Higgs particle. Fortunatelyfor theseexperimental
efforts, progressis being made in the understandingof triviality and its implications for elementary
particlephenomenology.Much remainsto bedone,however.Although techniquessuch as the analysis
of latticegaugetheoriesby the MonteCarlo renormalizationgroupmaywell hold thekey to the riddle
of triviality, the final answers are not yet known. This report thereforeconcludeswith the same
questionas it startedwith: Can elementaryscalarparticlesexist?The future holds the answer.
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