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1. Introduction and overview
1.1. Prolegomena

The concept of particle mass generation by spontaneous symmetry breaking [1.1-1.11] has become
one of the most important ideas in field theory. Most typically this symmetry breaking is produced by
the introduction of a scalar field [1.12-1.17]. This new field supposedly interacts with itself (via a ¢*
coupling) in such a fashion as to produce a ground state for the theory which lacks a symmetry of the
Lagrangian. At the semiclassical level, gauge particles propagating in the asymmetric vacuum appear to
be massive, while the underlying theory remains renormalizable [1.18-1.25]. It is generally assumed
that no significant changes occur in the full quantum theory due to effects such as nonperturbative
renormalization.

Such an assumption may not be correct however. A large body of analytical and numerical evidence
(reviewed in detail in sections 2-4) has been presented which suggests strongly that at least pure ¢* field
theory is “trivial” or noninteracting in four dimensions. Of course, if the theory does not interact, its
(nonexistent) interactions cannot break the symmetry of the vacuum, and gauge particles cannot
acquire a mass in this fashion. Should this triviality persist in realistic theories such as the standard
model of the weak interaction, it is fair to question the whole idea of symmetry breaking by elementary
scalars. In this case the standard model might be a low-energy effective model of a more complete
theory (and ipso facto Higgs particles may not exist); this possibility is considered in further detail in
section 5.

A more interesting scenario may occur in realistic theories where [as m the case of the O(N)
gauge—Higgs system in the large-N limit] gauge fields can transform a trivial ¢ * theory into a nontrivial
model. Although the situation with the standard model is not clear, one realistic possibility is that the
Higgs mass is bounded or predictable (see section 5).

1.2. Historical perspectives

The concept of triviality had its origins in the physical ideas of Landau, Pomeranchuk and
collaborators [1.26-1.40] over thirty years ago. Landau, Abrlkosov and Khalatnikov summed the
leading-logarithmic terms for the photon propagator D**( p®) of quantum electrodynamics in the limit
of large momentum transfer p°. Their result, when written in the “Landau” gauge, is

v 1 v Puly
D (p) =~ (8 - P22 a5 ). 1

. T 2 . .
where, in this limit, d( p*, a;) has a power series expansion
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while
t=1In( p*im*) (1.3)

and a is the renormalized fine structure constant, with m the electron mass (p* > m?).
If the result eq. (1.2b) is taken as exact, the photon propagator has a pole at the momentum scale

p2 =m’ exp(37/ay) . (1.4)

This pole is of course the famous “Feldman-Landau ghost” [1.26, 1.41] and leads to a number of
inconsistencies (e.g. tachyons) in the full theory [1.29, 1.35, 1.36, 1.42] if @y is nonzero. One might
therefore jump to the conclusion that quantum electrodynamics (QED) is “‘trivial”, i.e., that the theory
is inconsistent unless ay vanishes.

This conclusion is not warranted solely on the basis of such flimsy arguments, however, for the
resummation eq. (1.2b) is not justified when agt/37 ~ 1. In fact (as is usually mentioned in elementary
texts on quantum field theory) the “ghost” pole does not appear for momentum scales less than many
orders of magnitude greater than the mass of the entire known universe, so as a practical matter its
consequences for QED are nil. Nevertheless, in principle such an inconsistency (if real) is worrisome.

The physical mechanism at work here is a good deal less mysterious—it is simply the phenomenon of
charge screening [1.29, 1.30, 1.43]. If a bare electric charge is placed in the vacuum, it will create virtual
electron—positron pairs. The charges of like sign will be repelled, while those of opposite sign are
attracted. Eventually a “cloud” of virtual charge surrounds the bare test charge and reduces the value
of the charge seen at large distances. As probes of higher and higher momentum are applied, the test
charge is approached more closely and the observed charge seemingly increases. Disaster occurs if the
effective charge seen by the probe becomes infinite at a finite momentum scale.

1.3. Triviality and the renormalization group

For a deeper understanding of the nature of such inconsistencies, it is useful to study the problem by
means of the renormalization group (see section 3 and refs. [1.44-1.50]). The basic idea of the
renormalization group (which here means the renormalization group of Gell-Mann and Low, Callan,
Symanzik and others, rather than the more modern version due to Wilson [1.51, 1.52]) is that the
momentum scale u at which the physical coupling constants of a consistent “renormalizable” theory are
defined is arbitrary.

Specifically, a renormalized coupling constant A is defined by a measurement to be performed at a
certain momentum scale w. The theory itself must be equally valid for any choice of u, provided that
the physical couplings are appropriately redefined. If u is rescaled by

w—ple' =[a0]", (1.5)

then a physically measurable quantity G(u) in the original theory must equal its value in the rescaled
theory, implying an implicit rescaling of Ag:

G[A(®), ()] = GlAg, 1] (1.6)
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The dependence of A(f) upon ¢ can be expressed in terms of a “beta function” B[A(?)],

aA(t) 19t = B[A(D)] . (1.7)

For quantum electrodynamics, to lowest order in a [1.44,1.45],

-2
(22

B@)=5-+, (1.8)

implying that (for small a at least)

- (4979
a()= 1-agt/37’ (1.9)
where a(0) = a; fixes the initial condition.

This “running coupling” a(t) is equal to the fine structure constant evaluated at squared momenta
scaled by e’ compared to the squared standard momenta at which a is defined. The problem of the
“ghost” has again manifested itself, for the running coupling appears to become infinite at a finite
momentum scale. Again, for quantum electrodynamics there may be no difficulties in the full theory,
for, when a(¢) is large, higher-order terms in B(a) become important and the ghost might vanish.

1.4. Ghostbusting: The route to a consistent theory

It would be convenient if the Landau ghost could be exorcised in this fashion by the inclusion of a
few more terms in the beta function. Sadly this is not the case. The beta function for QED has been
evaluated to order a* [1.53]:

& & 1ma
Borp(@) =3+ 5~ ggg =t (1.10)

and the appropriate finger exercises rapidly reveal the persistence of the ghost within the perturbative
domain. To this day it is not known whether QED is fundamentally self-consistent.*’

* Physical intuition does not fail us however. This inconsistency is just the problem of charge screening
mentioned above. As the charge is redefined at higher and higher momentum scales, it appears to
increase without bound. What is needed (heuristically speaking) is a way to ensure that the physical
charge at any given realizable finite momentum scale is itself finite. This criterion can be formulated in
terms of the beta function of a theory. Consider the solution of eq. (1.7),

AQ)
da

t= (1.11)

The requirement that A(t) be bounded for all finite positive ¢ can be satisfied if B(A) is continuous
and obeys one of the following two conditions:

*) Actually this discussion is a bit naive. It has been argued [1.82, 1.83] that, if a nontrivial fixed point exists in quantum electrodynamics, it must
be an infinite-order zero of the beta function. See also ref. [1.84]. Recent calculation suggest that such a fixed point may exist [1.86].
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Ghostbusting condition (a). A(t) approaches a fixed point A\* as t— +o such that (A*=2)7'B(A) is
bounded as A— A* [thus B(A*)=0].

If B(A)>0 for A < A*, A approaches A* from below. Then by assumption (A* = A)7'B(A) is bounded in
this limit by some positive constant, let us call it c. It follows that ¢ increases without bound as A(f)
approaches A*, i.e., that if A, is finite then A(¢) is finite for all positive ¢. From eq. (1.11),

1 - .
=—- ln(A* A) + finite constant,

and thus t— + for finite A. The demonstration is similar if A approaches A* from above.

Ghostbusting condition (b). A(t) increases without bound as t— % but X “*B(A) is bounded in this limit.*’

The logic inspiring condition (b) is less crepuscular when the beta function B(x) for the inverse coupling
x= ) ° (with ¢ an arbitrary “‘small” positive constant) is evaluated,

o’fx

at a()‘ )= e _'(“Qfé(f)- (1.12)

A

It is immediately seen that condition (b) simply means that ﬁ(f ) vanishes at the fixed point x* =0, i.e.,
that an appropriately defined fixed point exists at infinite A. Taken together conditions (a) and (b) 1mply
that a fixed point A* must exist at some value of A(t) which is approached as t increases without bound.
Conditions (a) and (b) are usually summarized by the statement that an “ultraviolet” fixed point exists
for the theory.

It is a common misapprehension that a theory must be “asymptotically free”, that is, possess an
attractive ultraviolet fixed point at A* =0, in order to be nontrivial. The preceding discussion shows that
this need not be the case. All that is a priori necessary is that some fixed point exist; thus asymptotic
freedom is sufficient but evidently unnecessary in a nontrivial theory. However, the demonstration of a
nonzero fixed point (A* # 0) may well require nonperturbative methods. Some candidate techniques are
discussed in the following sections, see especially section 5.

It should be pointed out that the previous discussion is somewhat heuristic. For instance, the concept
of a beta function for a trivial theory was used but never explained. A more careful adumbration of
these fundamental concepts could begin the analysis by defining a field theory by means of an
ultraviolet cutoff. Next, for a given cutoff, the renormalized coupling constant is calculated in terms of
the bare coupling. Requirements of consistency (e.g. the existence of a vacuum state in the theory)
constrain the bare coupling, and ipso facto the renormalized coupling. The ultraviolet cutoff is then
removed to infinity; if the limit of these constraints is the requirement that the coupling constant be
zero then the theory is a trivial one. This construction forms the implied logical foundation of the
preceding discussion. A more modern approach (via the Wilson renormalization group) is given in
section 3.

*) This type of behavior can occur in beta functions of supersymmetric Yang—Mills theories, as evaluated by instanton methods. See ref. {1.85].
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1.5. Phenomenological implications of triviality in scalar field theories

The topic of interest in this review is of course scalar ¢* field theory, and so without delay we present
the result for the lowest-order beta function for a single-component (i.e. N =1) ¢* theory,

3

o At (1.13)

B(A) =
for an interaction Lagrange density
L(d)=—Ad"Y4!. (1.14)

(This result can be found in many standard references, e.g. refs. [1.49, 1.54-1.57].) The solution of the
renormalization group equations is essentially equivalent to the “parquet sum” of statistical mechanics
[1.31, 1.33, 1.58, 1.59] (further references can be found in ref. [1.60]). This lowest-order calculation
produces a Landau ghost pole in the running coupling constant A(f),

A(t) = (1.15)

AR
1- 311327
provided that A, (the renormalized coupling defined at ¢ equal to zero) is positive. This basic result does
not change in any lowest-order calculation for multicomponent scalar fields unless non-Abelian gauge
fields are included (see section 5 and refs. [1.61-1.63, 1.49]). Additionally in the standard formulation
of the theory A, must be positive if the vacuum energy is bounded from below [1.49, 1.54, 1.55]. (In
general, for stability any theory described by an interaction

-1 .

L= ar X ®: 9,8 ®, (1.16)
must exhibit the property that

X§;121¢i¢j¢k¢l =0 (1.17)

for t—>x.)

Of course all arguments based upon low-order calculations of the beta function suffer from the same
drawbacks as the corresponding calculation for QED. Namely, the region of interest [when A(z)
becomes large] is clearly outside the domain of small A where the lowest-order result for the beta
function is valid.

A more stringent argument for triviality can be generated in an N-component O(N) symmetric ¢*
theory [1.64-1.66, 1.42, 1.67, 1.68] in the limit of large N. This theory is defined by an interaction
Lagrange density

A (¢-9)

Li¢)=- 3 =" (1.18)

The beta function for the theory can be calculated by resumming an infinite series of diagrams to all
orders in A but only leading order in 1/N. The result is [1.65, 1.66]
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dA(t) 3A%(1)
_d;——:BO(N)(/\): 0l

(1.19)

which is algebraically the same as the lowest-order result for the N =1 theory, eq. (1.13). What is new
here is the inclusion of all orders in A in the calculation of the beta function.

The easy criticism applied to eq. (1.14) [that as the ghost pole is approached, higher-order terms in A
become important] is not applicable to this large-N calculation. Moreover, for large N the location of
the ghost pole implied by eq. (1.19) is independent of N. One might therefore conclude that A, must be
zero for the theory to be consistent, i.c., that the O(N) ¢* theory is trivial at least in the large-N limit.

This argument may be insufficient, however, because it is possible that the remainder term in the
1/N expansion is nonuniform in the limit of large ¢ [1.70], and thereby invalidates the 1/N expansion. It
is worth pointing out that the existence of a Landau ghost is not inconsistent with the development of a
renormalized perturbation series, for a ghost pole appears in the exactly soluble Lee model [1.71-1.74,
1.57]. The point is that in the Lee model (which lacks antiparticles and crossing symmetry) the “bubble
sum’ is exact, and so the ghost appears in the full theory.

The addition of gauge fields to pure ¢ theory is a necessity if results of practical interest to particle
theorists are to be obtained. Moreover, the coupled gauge—Higgs system may be nontrivial even though
the pure scalar theory is trivial. Examples of this phenomenon are discussed in refs. {1.75, 1.76] and
section 5, but it is worthwhile mentioning that if the above O(N) scalar field is coupled to an O(N)
gauge field, then in the large-N limit [1.62, 1.63] the theory is asymptotically free in both A and the
gauge coupling g (and thus presumably nontrivial) provided that

3A/gh < 3(1+V23)~2.72. (1.20)

The ratio eq. (1.20) is a familiar one, since to lowest order in the loop expansion the ratio of the
mass m,; of the “Higgs” scalar to the mass m,, of the N — 1 massive gauge bosons in the theory is given
by

(my/my) =3A./g% . (1.21)

The plausible assumption (discussed further in section 5) that this asymptotically free fixed point is the
only one in the theory then leads to an upper bound on its “Higgs” mass [1.76] for small g,

(my/my) < 3(1+V2/3). (1.22)

An even more interesting scenario occurs [1.77, 1.80] in “eigenvalue” theories like the Georgi-
Glashow model [1.79, 1.80] of the weak interaction (see also section 5). In these theories there exist
fixed points where, if every coupling constant in the theory (including the “Yukawa” or fermion mass
couplings) is chosen precisely, the theory is asymptotically free, and hence presumably nontrivial. As
pointed out above, a theory in general need not be asymptotically free in order to be nontrivial, and the
requirement that all its couplings be “fine tuned” is not generally considered an attractive possibility.
Yet if only one ultraviolet fixed point existed in a theory, all particle masses and coupling constants
would be determined by consistency conditions (reminiscent of the “‘bootstrap” hypothesis [1.81]), a
provocative concept. This possibility also has a natural implementation in terms of the number of
relevant directions at a fixed point in the Wilson renormalization group (see ref. [1.51] and section 3).
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Obviously all such ideas are highly speculative, and further consideration of their validity demands
that accurate nonperturbative methods for assessing the triviality or nontriviality of a theory be
developed. It should, however, be clear that the problem of triviality is of more than academic interest,
and a study of its implications may well lead to results of phenomenological import.

2. The precise approach: Rigorous formulation of triviality

It is well to keep in mind that before it can be determined whether or not a given field theory is
trivial, it is first necessary to define (1) a field theory, and (2) triviality. The attendant terminological
exactitude is not, however, a necessary precursor for comprehension of the remainder of this review.
Readers uninterested in mathematical formalism thus may do well to skip this section and continue on
to section 3. Those readers who, by contrast, are not disturbed by a precise approach to an already
monumentally difficult problem are invited to continue reading this section. The first two subsections
are brief interludes which sketch the definitions of quantum field theories and triviality. Following these
is an introduction to rigorous results obtained largely by the powerful random-walk and random-current
strategies. Finally a brief review is given of the construction of nontrivial three-, two-, and one-
dimensional ¢* field theories.

2.1. What is a quantum field theory?

The subject of axiomatic quantum field theory is largely beyond the scope of this review. Thus only a
brief outline of a few major ideas in this subject appears below. Readers interested in further details
may find refs. [2.1-2.4] useful.

A quantum field theory can be defined by a set of axioms—reasonable properties that a sensible
theory should possess. One basic set is the Garding-Wightman definition of a Minkowski-space
quantum field theory [2.5] (see also ref. [2.6]), which can be translated in terms of vacuum expectation
values [2.7]. Field-theoretic vacuum expectation values W, (also known as Wightman distributions) can
be defined in terms of operators ¢(x) acting on a vacuum state {2,

W, (. x,) = (2, ¢(xy) - 6(x,)02) . 2.1)

This approach leads to the famous Wightman Reconstruction Theorem [2.2,2.5], which states that, given
a set of W, obeying the Garding-Wightman axioms, there exists an essentially unique theory for which
the W, are the Wightman distributions.

The Wightman reconstruction theorem is based upon a Minkowski-space formulation of quantum
field theory. However, much of the work pertinent to triviality is formulated in terms of Euclidean
quantum field theory. Euclidean-space methods were first discussed in terms of perturbation theory
[2.8-2.10]. Despite early work on Euclidean field theories [2.11, 2.12, 2.7] progress in this direction was
largely initiated by Symanzik [2.13, 2.14] and by Nelson [2.15, 2.16], which inspired subsequent
theorems by Osterwalder and Schrader [2.17]. (Although ref. [2.17] is correct in its general outlook, the
reader should be warned that a technical error exists in the last lemma; see refs. [2.18] and [2.1].) The
point of the Osterwalder—Schrader approach is that a unique Garding-Wightman theory can be
reconstructed given an appropriate set of Euclidean region “Green’s functions” (more commonly called
Schwinger functions). These ideas were instrumental in developing a rigorous definition of quantum
field theory based upon Euclidean-space path integrals.
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Path integrals were first used “formally” by Feynman [2.20]. Subsequently [2.21] Kac developed
rigorous aspects of the theory based upon considerations of the Ornstein-Uhlenbeck velocity process,
which is in turn based upon the fundamental work of Wiener [2.22]. It remained for Nelson to show
[2.15] that not only can one develop a path integral formalism over the free Minkowski field but that it
is a manifestly Euclidean-invariant path integral (see also ref. [2.24]). Euclidean-space path integrals
also allow a natural connection to be made with statistical mechanics and the renormalization group
(see section 3).

2.2. What does “triviality” mean?

As is discussed below, much of the formal work done on triviality involves statements that a given
theory is a trivial “generalized free field” if certain preconditions are met. The concept of a generalized
free field was introduced in ref. [2.24], and can be expressed [2.1] in terms of a factorization property
described below.

Consider the structure of W,(x, y) = ({2, ¢(x)¢(y)£2). By translation invariance, W, can be written
as a function 4, of (x — y)

Wy(x, y) = A (x—y). (2.2)

From the Garding-Wightman axioms, it follows that A, (x) has a Kallen-Lehmann representation
[2.1,2.25],

4,0= | 4, m)dotm?), (2.3)
m2>0
where
d3p eip“x"L
o | 9P 1z
a,my= [ SL 7 e (g ) (2.9)

and p(m’) is a polynomially bounded (positive) measure.
It is useful in the definition of a generalized free field to rely upon the notation {2.26]

[t,,...,x,]=0 ifnisodd, (2.5a)
(X, ..., x,]= > (x,.x; 1+ [x ,x ], if niseven, (2.5b)

pairs

where [x, y] denotes a given dlstrlbutlon in two variables, and the sum in egs. (2.5b) is over all ways of
writing {1,...,2n} as i . Gy, with i <iy<eee<i,, G <j,...,i,<j,. Then [2.1] it
follows that 1f [x yl=4.( y - x) possesses properties implied by the Gardmg—nghtman axioms, then
a set of W, defined by

W(x,...,x,)=[x;,...,x,] (2.6)

’ n

obeys these axioms and the associated field theory is a generalized free field, i.e., it is a trivial theory.
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In the special case that p(m”) = 8(m” — m}), the associated theory is called a free field of mass m,. The
Schwinger functions for a free field are easy to find [2.1],

sy = [ S £ L k) @)
Q2n)* k~+m; 27
and
S,y )= s vl (2.8)
where K|, is the associated Bessel function and
[x, y]=8,(x — y; mg) . (2.9)

Discussions of free fields in the path integral formalism can be found in the standard reviews [2.19,
2.20, 2.1, 2.24].

2.3. Random walks and triviality

Many important questions about the triviality of ¢* field theories are most naturally answered when
the problem is formulated in terms of random walks. This modus operandi originated in the germinal
work of Symanzik [2.14]; earlier pursuits of ¢* triviality are reviewed in refs. [1.60] and [2.3].

Random-walk approaches and the related random-current ideas are an integral part of proofs of the
triviality of ¢* field theory in five and more dimensions [2.27-2.29] and in obtaining partial results in
four dimensions [2.27, 2.28]. A heuristic summary of the latter partial results (reviewed below) is that
one- and two-component pure ¢ field theories in d = 4, constructed as a scaling limit of ferromagnetic
lattice field theories, are trivial unless they are asymptotically free. Moreover [2.30], if these theories
are to be nontrivial, mean field theory must be exact in these models. Obviously, if perturbation theory
is any kind of a guide to these models, they are not asymptotically free (and logarithmic corrections to
the mean field picture exist), but this has not been eliminated rigorously as a logical possibility. Further
results of this random walk formulation can be found in refs. [2.30-2.37] (see also the reviews in refs.
[2.38-2.42]).

The reformulation [2.13] of ¢* field theories as random walks is a striking innovation. Some intuition
as to how this comes about can be gleaned [2.27, 2.29, 2.40] from a simplified special case of the above
calculations. Consider a scalar field theory defined upon a d-dimensional Euclidean hypercubic lattice
ZZ with lattice spacing a. The fields ¢, obey a distribution law

du(¢)=2z""e " [1d¢,, (2.10a)
where Z is the standard partition function and
S(¢) =38 (2) (6= &)+ 2 (3mpd” + 1a?) . (2.10b)
if i

Here, (ij) refers to a sum over all nearest-neighbor pairs, each taken once. Equation (2.10b) can be
rewritten
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S($) = BH(S) + 2[3(m; + 2dB)6 + INa]]. H(@)=+ 2 0. (2.11a)
so that

du(g)=2"e"@ [ Ldng), (2.11b)

dA(g,) =expl3(mg +2dB)¢; + 1A.$;] . (2.11¢)

The field strength renormalization is thus given by {(a) = B(a)a’ . As the continuum (a— 0) limit is
approached, the bare constants 8(a), m(a), and Ay(a) are varied so as to obtain renormalized physical
parameters A, and m, which are finite.

In the free-field limit (A, =0), the Schwinger function for the theory eq. (2.11) is given by

S5, )= (9:6,)0= | du(@) B0IB(3) = (~BA+ m) ™. e
which is defined upon Z¢ in terms of a finite-difference Laplacian
-BA+mi=(2dB+mi)I—JB . (2.13)

Here 1 is the identity matrix and the elements J_ of the matrix J are one if x and y are nearest neighbors
and are zero otherwise. Then S,(x, y) can be expanded in a Neumann series in J,

S =872 BT, (2.142)
B=p2dB+md) ", (2.14b)

Consider next a random walk w of length |w|. This walk can be thought of as being generated by a
particle which makes steps of length one randomly in all 24 directions emanating from a given lattice
site. Then S,(x, y) can be expressed in terms of a sum over all of these Brownian walks,

Sk, y)=B"" 2 gl (2.15)

w: x>y

If n,(w) is the total number of visits of a given walk  to some site j, then

S y)=p"" 2 11 . (2.16)

WIXDY g od

Note that the critical value of [§ (when the lattice spacing a vanishes) occurs when

(B =2d, (2.17)

which is the number of directions that a particle at a given site can jump.
The more general case with A, nonvanishing can also be treated by random-walk methods. This
reformulation leads to a natural interpretation of triviality in terms of the intersection probability of
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random walks. It also leads to the above-mentioned theorems on ¢* triviality in four and more
dimensions. Define

8(s)ds ifn=0,

dp (s)=1 "' B (2.18)
=) 6(s)ds n=1,2,3,...,

and

de, 0 =11dp, (1) (2.19)

Note that ¢, can be thought of as the total amount of “time” that the random walk w spends at site j
[where it makes n,(w) visits]. Define a -dependent partition function

Z(t)= f e P IJI g(e’ +2t)dg; (2.202)
with [cf. eq. (2.11¢)]

g(¢?)=dr(¢)/d¢ . (2.20b)
Then

5,00 = (00, =_2 8 208,00, (2219
where

2(t) = Z(t)12(0) > 0. (2.21b)

In the noninteracting case A, =0,
zo(t) = [T exp[—(2dB + m})t], (2.22)
]
so that [cf. eq. (2.12)]

Solx, y) = <¢x¢y>o =(-pA+ m(z));yl‘ (2.23)

The foregoing explication makes it clear that the random-walk model corresponding to the
interacting (A, #0) theory has the same combinatoric structure as the free-field limit. What defines a
particular class of walks are the weights z(¢) associated with each random walk when a sum over walks
is taken.

It is easy to see that virtually any field-theoretic quantity can be expressed in terms of random walks.
For instance, consider the connected four-point “Ursell” function defined by

u(4)(x1, Xy X3y Xy) = <¢(x1)‘¢(x2)¢(x3)d’(x4)> - ; <¢(P1)¢(P2)><¢(P3)¢(P4)> ) (2.24)
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where the sum is over all pairings, P, of {1, 2, 3, 4}. In the random-walk formalism this can be written
[2.27,2.29]

P
U,k =2 2 il f dp, (t') dp, () [2(t' + 1) = 2(t)) ()] , (2.25)
@1, @
where L lewz ranges over all walks w, and w, with

w;: x(P))—=>x(P,), o, x(P,)—x(P,).

The renormalized quartic coupling A, can be defined in terms of the four-point function by

Ae =~y H(mg)", (2.26)
where
a= j d%, d%; d%, u (2, 2, x5, %) (2.27)

while the susceptibility y is given by

X = f d’x 8,(0, x), (2.28)
and
) 1
my = llgnm - m In S, (0, x) (2.29)

defines the renormalized mass m,,.
An upper bound on the four-point function (essential for the following discussion on triviality) can
now be constructed. Define

a1ty =ITe (). (2.30)

If In Z(¢' + ¢%) is written as an integral over derivatives in t' and ¢* and Ginibre’s inequality [2.43] is used
to estimate the integrand, it can be shown that [2.27]

A0, + 1) = 2(1)4(s,) (2.31)

Thus it follows that (recall that u™® is negative)

u(x,, ..., x)=2, > plaltl f dp, (¢') z(t") dp, (1*)2(1*) [exp(—onZtng)—l]. (2.32)

P w0

Note that if j is not contained within the random walk w;, then t'} vanishes. Thus the right-hand side
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vanishes unless a random walk w, intersects a random walk w, with nonvanishing probability. This is a
major result of the formalism. The renormalized quartic coupling can be bounded from above:

(2.33)

where P, , is the average intersection probability for two “field-theoretic” walks w, and w, with weights
z(w,) and z(w,) as defined above. Moreover, it can be shown that (see, e.g., ref. [2.40})

0=($(x)b(y)) <cB™'lx—yI"™*, (2.34)

which says, heuristically, that the Hausdorff dimension of these field-theoretic walks is at most two.
Thus it may be intuited that P, , vanishes in more than four dimensions. The motivation for this
noumenon is the fact that walks of Hausdorff dimension two fill a plane (heuristically speaking). Thus
since two planes in general do not intersect in more than four dimensions, neither will two such random
walks. The ordinary random walk (corresponding to a free field theory) has Hausdorff dimension two,
for instance, and is known to be nonintersecting in d >4 [2.44, 2.30, 2.31].

Another pictorial example of some utility is the limit obtained by analytic continuation of an
N-component ¢ field theory to N = 0. It is well known (see, €.g., ref. [2.45]) that this limit of pure ¢*
field theory is the Edwards model [2.46] of the self-suppressing random walk, which becomes the
self-avoiding walk (SAW) in the nonlinear sigma model limit of large A,. Numerical simulations of this
walk [2.30,2.47] can be performed with remarkable precision. The critical functions of this theory can
thus be measured accurately; the results are consistent with the idea that this limit model is trivial in
four and more dimensions. In particular, these simulations predict logarithmic violations of mean-field
scaling for the renormalized mass. The significance of scaling violations is further elaborated upon
below.

It is therefore not surprising that the above inequality eq. (2.33) can be used [2.27, 2.28] to show that
the connected four-point function vanishes in five and more dimensions for one- and two-component ¢*
field theories. In fact, inequalities of this form can be generated and used to show that all connected
2n-point Wightman distributions vanish in d >4 (for n =2, 3, .. .). Thus these theories are generalized
free fields (and presumably are also free fields).

It also follows [2.27,2.28] that in four dimensions one- and two-component ¢* field theories are
trivial, i.e., that at noncoinciding arguments

lim u®(xy, x,, X5, %,) =0, (2.35)
provided that in this limit of vanishing lattice spacing a the field strength renormalization vanishes:
1111_1)1[1) {(a)=0. (2.36)

If eq. (2.36) is not satisfied (i.e., if dim[¢] = 1) the limiting theory cannot be both Euclidean and scale
invariant unless it is a free field theory [2.48]. Thus if ¢* field theory (with N =1 or 2) is actually
nontrivial in four dimensions, it must then be asymptotically free, in sharp contrast to the expectations
generated by a perturbative evaluation of the beta function. In other words, the beta function has no
nontrivial zeros (see section 1).

More stringent results have also been obtained within this framework. It has been shown that
[2.30,2.31]
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0= g =const. B°-(mg)" dx/dB . (2.37)

In f.our dimensions, when 7 (=1, the anomalous dimension of ¢) vanishes, eq. (2.37) implies that A,
vanishes as the critical surface is approached unless mean field theory is exact, i.e., unless, as 8 — B.
from below,

mg~(B.—B), x~(B.—B), (2.38)

with » = 3 and y = 1. Corrections to eq. (3.38) can be at most logarithmic [2.30, 2.35]; such logarithmic
corrections to scaling are in fact predicted by the renormalization group (see section 3 and refs.
[2.49-2.51]), and are also suggested by the above-mentioned numerical data for the self-avoiding
random walk. Moreover, if these logarithmic corrections are present, then there is no broken-symmetry
phase of the theory [2.40,2.31].

2.4. Nontriviality of ¢* field theory when d <4

For the sake of completeness, a few references on the construction of a nontrivial ¢ field theory in
three and two dimensions are given. The first and most important steps in the construction of the
three-dimensional model were taken by Glimm and Jaffe [2.52]. Later work in this direction includes
refs. [2.53]. Other approaches may be loosely categorized as the “Italian” method [2.54], Balaban’s
method [2.55], the Battle-Federbush method [2.56], and the Brydges—Frohlich-Sokal method [2.31].
This last method is particularly simple, and does not make use of the “phase cell analysis”, which the
other schemes are based upon (see also section 3). Several clever (if incomplete) arguments are also
given in ref. [1.60].

It should be pointed out that the construction of ¢* field theory in three dimensions is a problem of
extraordinary difficulty, since infinite mass and vacuum energy divergences appear. In two dimensions,
by contrast, these divergences can be eliminated by the simple expedient of Wick ordering. Traditional
constructions of two-dimensional ¢* field theory can be found in refs. [2.1, 2.3, 2.29], see also refs.
[2.31] and [1.60].

One-dimensional ¢* field theory has also been constructed, see ref. [2.57).

3. The modern approach: Triviality and the renormalization group
3.1. Motivation

The casual reader may well believe by this point that the study of triviality in quantum field theories
is an esoteric exercise in formal mathematics. In this section the fundamental notions of triviality are
recast in terms of the tenets of the renormalization group, with the hope of rescuing triviality from this
innocuous desuetude. Many of the concepts of triviality are in fact most naturally expressed within this
framework. Moreover, the renormalization group study of triviality can be accomplished with some
efficacy by numerical analyses of lattice field theories.

The renormalization group is more of a way of thinking about a problem than a specific technique.
Indeed, the sobriquet ‘“renormalization group” is presently applied to a number of ideas and
calculational methods which can appear entirely disjoint to the uninitiated. The major theme of all such
approaches is the idea that in a system with a large or (as in the case of a quantum field theory) an
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infinite number of degrees of freedom, the physical properties of this system can be equated to those of
a system with fewer degrees of freedom but with different interactions. This idea suggests that the
original theory can be successively mapped onto a sequence of theories, each with fewer degrees of
freedom than its predecessor, and each characterized by a new set of coupling constants. The implied
sequence of sets of coupling constants defines a renormalization group “flow” or trajectory as the
number (or number density) of degrees of freedom is steadily reduced. Instead of solving the system
directly, its properties are revealed from an analysis of these flows. In the case of a quantum field
theory, useful quantities such as the number of independent renormalized parameters in the theory or
the anomalous dimensions of various operators can be deduced in this fashion. Moreover, something
calculated in one region in the space of coupling constants (e.g., where perturbation theory is valid) can
be transported to another region of coupling constants by integrating the result along a renormalization
group trajectory. (Such is the origin of “renormalization group improved perturbation theory”).

As discussed in section 1, the original (or “historical”’) renormalization group [1.44-1.50] had its
origins in the fact that in a “sensible” quantum field theory, measurable quantities can be defined (in
terms of other measurable quantities) in a fashion which is independent of the renormalization point u.
This renormalization group formalism is quite familiar to high-energy physicists, and is thus discussed
below only in reference to more contemporary approaches. Readers interested in further details may
enjoy perusing refs. [1.49], [1.50], and [3.1].

The more modern renormalization group due primarily to Wilson [1.51, 1.52] draws heavily upon
these ideas. This renormalization group has largely been applied in statistical mechanics, though
recently it has come to be useful in quantum field theories defined upon a spacetime lattice (see ref.
[3.23] and section 5). In this approach, no true “renormalized” couplings are ever calculated. Instead,
the Wilson renormalization program is applied directly to the bare cutoff field theory. The high-
momentum components of the path integral are integrated out, and the cutoff A is reduced. The action
for the theory changes its functional form under this operation, and in general an infinite set of
couplings is generated. This is in distinct contrast to the historical renormalization group, where the
number of couplings does not change as the renormalization point u is varied. Nevertheless there are
points of contact between the two approaches. One example is the fact that the number of directions of
instability at a fixed point in the Wilson approach equals the number of independent renormalized
couplings for the theory used in the historical approach. The application of these ideas to ¢* field
theory is discussed below. As the Wilson approach is the most useful in the study of triviality, it is
discussed first, and then its relations to other approaches are explored.

3.2. The Wilson renormalization group
3.2.1. Conceptual foundations
It is easiest to begin with the formulation of a single-component ¢* theory on a spacetime lattice.

Consider first the theory in continuous d-dimensional Euclidean space, where it can be defined by the
partition function (or vacuum-to-vacuum transition amplitude)

z=[Dg exp(-$) = ,-.{0[0),.., (3.12)

where

5= [[ats{iay + tmig? + a8, (3.1b)
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with ¢ = ¢(x). One lattice formulation of the model is given by the association of a canonically
dimensionless field S, with points 7 in a hypercubic lattice. The discrete approximations

B—a S, 0,00~ a S, -8),  [doa Y, (3.22)
along with the redefinition of the theory in terms of dimensionless couplings u and r,
A=a"""y mi=a’r (3.2b)

(where a is the lattice spacing and 4 is a unit vector in the direction ) can be applied to the action eq.
(3.1b) to yield

Slattice = Z %(Sn+,; - Sn)2 + 2 (%rS'ZI + uS:)
n,p n
=-28,8,., +u2(S. - K)* +constant (3.3)
n.p n

where K= —r/4u. In the limit of large A, the theory defined by eq. (3.3) is (modulo a rescaling
S, — VK o,) an Ising model, defined by the partition function

leing = H (J dUn 8(0-3 - l)) CXp(K 2 0, Un+;¢>
n n,p

= f Do exp(_slsing) ; (34)

whose correlation functions are defined by
I={00)=2" | Do (0y0,) exp(-S,0,). (35)

Note that the (o) are restricted to the values +1. The asymptotic behavior of I, for large |n| is thought
to be

I, ~exp[—|n|/&(K)], (3.6)

where £(K) is a dimensionless “correlation length”. It is convenient to define a renormalized mass for
the scalar particles of the theory in terms of &(K),

mg =[ag(K)]™", (3.7)

whereupon it becomes evident that if a continuum limit (a— 0) of the theory with particles of finite
mass exists for some value K= K_, then £(K_ ) must be infinite. This requirement of a divergent
dimensionless correlation length implies that a continuum limit of a lattice theory must occur at a phase
transition of second (or higher) order. The analysis of a continuum limit of a lattice theory is thus a
study of critical phenomena, for which Wilson’s renormalization group was designed.
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A brilliant qualitative picture of the behavior of the Ising model at a critical point was suggested by
Kadanoff [3.3]. This idea describes the behavior of a system with large correlation length in terms of the
behavior of a system with small correlation length. (The following discussion is actually [1.51] a
rephrasing of Kadanoff’s ideas.) Consider for simplicity a plane lattice of Ising spins (fig. 3.1) divided
into blocks of four spins each. Near a critical point, ¢ is very large, so the four Ising spins in a block are
very well correlated. In particular, the four spins in a block act much like a single spin—all four spins
will be either up or down. The original lattice can thus be replaced by an effective lattice where the
interactions are between blocks of spins rather than between the spins themselves. The correlation
length for the block system is half the correlation length of the original (or “site””) system. This process
of blocking can be repeated indefinitely until a system with £ ~ 1 is reached.

Suppose that in the original system K is a certain value K, and the blocked system can be described
with a nearest-neighbor action with K = K. Such a truncation of the blocked action is at best a severe
and dubious approximation. However, it is easy (at least in principle) to keep track of the arbitrarily
large number of other parameters, and so in egs. (3.8) they are neglected. The correlation length in the
original and blocked system are then related by

£(K) = 1€(Ky) (3.8)
where the “truncation” assumptions

K, =f(K,) (3.8b)
and

K, =f(K,_,) (3.8¢)
are made, so that (blocking n times)

§(K,)=2""¢K,) . (3.8d)

The fact that at K = K there is a second-order phase transition with £(K_) infinite means that

AK)=K.. (3.9)
° ® : 'y .
® * : . ° ° '
______ :____ — —_—
e o |I e o ° °
. ° : . °

(a) (b)

Fig. 3.1. Schematic diagram displaying the concept of interactions between spins being equivalent to interactions among blocks of spins at a critical
point. (a) The original lattice, (b) the block lattice.
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In other words, K_ is a fixed point of the transformation eq. (3.8c). The study of such fixed points is at
the. heart of the renormalization group program. When K is near K, f(K) can be expanded in a Taylor
series,

AK)-K.=MK-K), (3.10)
where A =df(K)/dK at K_. Since

EK)=(K-K)™ (3.11)

for K near K, then [1.51] in this limit

_ ] _ (IK)— K\
2= £K) —( K-K > : (3.12)
From eq. (3.10) it follows that
v=In2/lnA. (3.13)

Th1s critical exponent v is related to the anomalous dimension v, of the operator ¢° in the original
¢* theory, as is discussed below. Thus from the recursion relation f(K) it is possible to determine the
critical point K of the theory as well as the anomalous dimensions of various operators in the associated
field theory. The important issue to address is therefore how the function f(K) can be calculated, i.e.,
how the block action governing the block system is determined from the site system. Note that this
function can produce nonanalytic behavior in £(K) even if f(K) is analytic near K_.

The above heuristic scheme is now explored in detail through several examples. These examples
allow an explication of the Wilson approach to renormalization, which allows one to calculate the
renormalization group trajectories [defined above for a single coupling K, by the function f(K))}.
Although the existence of such trajectories is implicit within Kadanoff’s ideas, it remained for Wilson to
develop this calculational scheme.

3.2.2. Application to ¢ field theory: The gaussian fixed point
Consider the n-component ¢* theory defined by the action

§= f d% [3mo(¢ - &) + A(¢ - &) + 1c(9, 6 - 3%9)] (3.14a)
=4 2 (my + k)|, |* + AL~ ) kEk GiBiic BB sy 5 (3.14b)

where i and j are the indices of the components of ¢,, the Fourier transformation of ¢(x). All momenta
are restricted to magnitudes less than a cutoff A (i.e., |k| < A). Here, L is the length of a side of the
“box” in which the theory is defined (the infrared cutoff).

The renormalization group analysis performed below (following ref. [3.6]) on egs. (3.14) is defined
for an arbitrary rescaling factor b > 1. Both the scalar fields ¢ and the spacetime in which the theory is
embedded are continuous. The blocking procedure can be summarized in two steps.
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Step 1 (Kadanoff transformation): The components <Zq for A/b<|q| < A are integrated out. This is
essentially the same procedure as dividing an Ising system into blocks and averaging the site spins over
a block.

Step 2 (Wilson definition of block fields): The block fields ¢, are defined in terms of the remaining
original fields {¢,: |k| < A/b} by

oL =(p,b" )b, » (3.15a)

so that 0 < |k'| < A. In order that the transformation can be repeated ad infinitum, it is necessary that p,
be a power of b. It is traditional to define an exponent 7 via

p,b??=b"""2, (3.15b)

As is shown below, the exponent 7 is equal to the anomalous dimension v, of the field ¢.

Two alternate explanations of the rescaling factor b' ™" can be advanced, depending upon the
background of the reader. The more glib explanation can be offered to the particle theorist: As the
cutoff is reduced, the field strength renormalization changes. (In fact it is in general impossible to
obtain a fixed point of the renormalization group transformation without such rescaling.)

The explanation for the condensed matter theorist is more intuitive. Recall the heuristic Ising model
study of renormalization given above. If the only allowed configurations are those in which all site spins
in a block are aligned, then the sum of the four spins in a block takes on the values +4. Rescaling by a
factor of four is needed to ensure that the blocked system is also an Ising model, so that the
transformation can be repeated and fixed points obtained. (Actually configurations in which all site
spins in a block are not aligned are important, so a nonlinear blocking transformation is needed [3.5].)

The two steps defining the block renormalized action S’ can be combined to give

exp(—S' — AL%) = U Dé e_s>

$k_)b1—1]/2$bk ? (3163)
where
fDJ» Ef I1 Ildé4,, (3.16b)

Alb<|gl<A i

and S’ has been defined so as to include no additive constant.
It is simpler to consider first the case with A equal to zero. The required integrals are simple
gaussians, and give the result

§=3 3 5 m)du
ilk|<A/b
1 - -
= 5 . |§ ) b ﬂ(ckI2+ m2b2)|¢i’k"2 , (3.17a)
1 27
ALd = — - ] ( ) .
A/b<2|q|</1 i m*+ cq2 (3.17b)
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Equation (3.17a) is the same as eq. (3.14b), but with new parameters

m b =(m'), (3.18a)
ch"=c". (3.18b)

The renormalization group transformation R, can be written symbolically
Rou=p' (3.19a)

as an abbreviation for

5 )

Fixed points u* of R, are defined by
Ropu*=p*. (3.20)

The so-called *“gaussian” fixed point of interest to field theorists occurs in eq. (3.19b) when 7 =0,

i = (0) _ (3.21)

c

By referring back to eq. (3.14), it can be seen that this fixed point corresponds to a free field theory.
When 7 =2 another fixed point appears in the theory if m” >0,

2
m* > 0: ,Lw=("’(’) ) (3.22a)
If m’® is negative, an (infinitesimal) quartic coupling constant can be used to stabilize the theory, and a
third fixed point appears,

2
m'<0: p*, = ('g ) . (3.22b)

The three fixed points 3, wX, and p*, have very different interpretations. The fixed point u§ is the
critical fixed point of the theory (corresponding to the ferromagnetic phase transition of the associated
Ising model) and is the only fixed point of field-theoretic significance. The fixed point w7} describes a
situation in which each block field has a gaussian distribution and is independent of all other blocks. It
is analogous to the high-temperature limit of the Ising model. The fixed point u* , (corresponding to the
low-temperature limit of the Ising model) describes a system in which each block field takes the same
large value. Neither p2 nor u*, describes a system with an infinite correlation length. Thus, by the
discussion following eq. (3.7), they are unimportant for field theory and are not considered further.

How does the correlation length £ scale under the renormalization group transformation? Define a
correlation function G (x) by

GO (x)=(6(0)$(0)) — ($(x))($(0)) , (3.23a)
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with
D¢ e *0O(x
(O(x)) = I—J‘II;T_S() : (3.23b)
An oft-used definition of the dimensionless correlation length ¢ is then
2~(2) d
£=A %;%d—xx , (3.24)
i.e., & is an “effective range of correlation”. For § given by eqs. (3.14) with A set to zero,
£ x(m* —m*) "= (m") " (3.252)
(since m* equals zero in this case) and at the gaussian fixed point u§,
&'(Ry) x (m'® = m**) ™ = (m'?) "2 = &(u) /b (3.25b)
By following the argument leading to eq. (3.13), it can be seen that
Inb 1 (3.26)

From egs. (3.15) and (3.23) it follows that the Fourier transform éiz)(k) of G{?(x) varies under the
renormalization group transformation like

GOk, w)=b>"GP(bk, R,p) (3.27)

where the dependence upon the parameters u has been made explicit. Since eq. (3.27) holds for any b,
it is permissible to choose b = k', so that at a fixed point (where ¢ is infinite),

GOk, u) =k G, 1Y), (3.28)
so that the anomalous dimension 7y, of the field ¢ is given by
Y =M. (3.29a)

Moreover, as is shown below [see eq. (3.12)], the anomalous dimension of the operator ¢ is given by

1

Y2 =2-v , (3.29b)

and thus vanishes at u§. Since the anomalous dimension v, is also zero at the gaussian fixed point, the
renormalization group analysis is consistent with the statement that this point describes a free field
theory. In this particular case, the result is obvious by inspection of egs. (3.14). Nevertheless it is useful
to demonstrate the formalism in preparation for study of more complicated systems.
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In the most general case, there are an infinite number of interactions, and u is a vector with an
infinite number of components. The critical surface of a fixed point u* (where the correlation length is

infinite, and hence a renormalized quantum field theory can exist) is defined as the set of points u_ such
that

,EI.‘HC Rop.=n*. (3.30)
If p is near p*, it makes sense to expand

w=u*+du, (3.31)
where du is “small”. Then

du' =R} du , (3.32)
where (assuming that the renormalization group transformation is nonsingular)

(Ry)ap = 910/ dutg) .- (3.33)
is a linear operator. If R, has eigenvectors v, corresponding to eigenvalues ¢;(b), then, since

RyR,v,=R;,0,, (3.34)

it follows that

e;(b)e,(b") =e;(bb") . (3.35)
and hence
e;(b) = b, (3.36)

where y; is independent of b.
The vectors éu and du’ can be expanded in terms of the v,

du =21, (3.37a)
]

du' =2t (3.37b)
]

t;=b" . (3.37¢)

Each of the ¢; is by assumption a smooth function of the couplings in the theory. It is also clear that
for each of the y; that are positive (and thus define what are commonly known as “relevant” directions
at the fixed point) the corresponding ¢, must vanish on the critical surface. The ¢ corresponding to
negative eigenvalues y, define “irrelevant” interactions, and in general do not vanish on the critical
surface. Finally, the y, which vanish define “marginal” directions. These marginal eigenvalues are
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something of a nuisance, and often mean that a more careful analysis of the problem (i.e., the inclusion
of more terms in a power series) is needed. They can also lead to the presence of logarithmic violations
of scaling relations like eq. (3.28) (see section 5.2).

The above concepts can be illustrated by a perturbative analysis in A near the fixed point ;. The
result for small A is [3.4, 1.51, 3.6-3.8]

A =b"",
(m'y’ = b’ [m”* + A(3n+ D) (n/n)(1 - b*%)],
¢'=c, (3.38)
where
d-2
no="K, % , (3.39)
21—dﬂ_—d/2
1 .
= 8_77'2 lf d = 4 . (339C)

Here, n is the number of components of the ¢* theory and K|, is the surface area of a unit sphere in
d-dimensional space divided by (27)>
The matrix R} is then given by

L (b7 " -b")B 0
Ry=10 b4 0], (3.40a)
0 0 1

where (near u})

m,2 m2
M |=Ry A, (3.40b)
¢ c

and

B=(3n+1)n/n. (3.40c)

The eigenvalues of Ry are b% b*™% and 1. The eigenvectors are

1 -B 0
vl=(0), vz=( 1 ), v3=(0), (3.41)
0 0 1

and correspond to exponents

ynw=1v=2, y,=4-4d, y;=0 (3.42)
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In the neighborhood of the fixed point uj, the vector u of coupling constants is given by [see egs.
(3.37)]

p=pit v, o, + s, (3.43a)
with
')\ (0
pi=t A |={0], (3.43b)
c* c
t,=m>+ B\, LtA, tH=c (3.43¢)

The equation for the critical surface u_ is simply #; =0. If the spacetime dimensionality d of the
system is greater than four, the parameter A is irrelevant along this critical surface. (Note that, since the
anomalous dimensions 7y, and y,> vanish for any infinite-cutoff theory defined on this surface, such a
theory must be trivial.) These renormalization group flows point away from this critical surface when d
is less than four, implying that another fixed point must exist. Both results are consistent with the
theorems discussed in section 2, which show that ¢* field theory is trivial (nontrivial) when d is greater
than (less than) four. (Note that this simple analysis is inconclusive when d equals four.)

A good question to ask is whether other terms can be present in the original action § [of eq. (3.14)]
which generate further relevant interactions at the gaussian fixed point. It is easy to see, however, that
if another interaction is included with P, powers of ¢ and P, powers of J,, then the corresponding
eigenvalue is y = P, (1 —d/2) — P, + d. In four dimensions the symmetries of Lorentz invariance and
reflection (¢ — —¢) symmetry in ¢ forbid the existence of terms with positive y in the action. Thus
within the insular domain of validity of perturbation theory, the above analysis of the gaussian fixed
point is complete.

3.2.3. The renormalization group in the large-n limit

Another tractable example which demonstrates the machinery of the renormalization group is the
limit of a ¢* theory as the number n of components increases without bound. The action for this large-n
limit can be written

5= [ d [3o(asy + U], (3.4

where U(¢?) is an arbitrary function. The analysis presented here follows refs. [3.9]. Since for large n
the fractional fluctuation is small

& —(87) 3.45
) G4
it is possible to expand
U($*)~U(($™)) + 51({$*))(¢* = (7)), (3.46)
where

Hop?)=20U(¢*) /3", (3.47)
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so that for large n
S=1 [ % [c(a0) + (8267 + LU(87) - (%)), (3.48)

The first term in eq. (3.8) is quadratic in ¢ and the second is a constant. The probability distribution
exp(—S) is thus a gaussian, and the renormalization group transformation can be performed analytical-
ly. (Note that the function #({$>)) plays the role of an effective m°, much like a self-consistent field
approximation.) After the blocking (3.16) is performed on the action (3.44), the block action is of the
same form, but with ¢’ = ¢b™". Therefore a fixed point with finite ¢ requires that

c'=c, n=0. (3.49)

A simple way of presenting the solutions for the fixed point function U*(¢?) is as follows. Invert
#(¢°) to get ¢°(1), and write

¢P= 2 W, (" (3.50a)
m=1
Also solve '(¢?) for ¢° and get
d*= 2 W (R,u)t'™ " (3.50b)
m=1

The renormalization group transformation can then be written

W, (R,p) =W, (n)— Wb " + Wi, (3.51a)
where
Wir=(-1)""nK,A"""(d-2m)"", (3.51b)

and K is given by eq. (3.39b).

The renormalization group transformation is most elegant when written in terms of “scaling fields”
g..(1). These scaling fields [3.10] are the generalization of the eigenvectors v,, of eq. (3.34), and obey
the equation

En(Ryit) = 8, ()™, (3.52a)

where the eigenvalues y,_ are
Ym=d—2m. (3.52b)
The g, (u) are given in terms of the W, (u) by

Em(m) =W, () -W. (3.52¢)
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The fixed point function t*(¢>) =2 dU*(¢*)/d¢” is given implicitly by

ﬂz_ g 2~d [ d=1r % -1 -2
pr =1 (@=24" [dp p" [ +p) " - p 7). (3.53)
A

The solution of eq. (3.53) cannot be expressed in general as a closed analytic form, but some properties
of the solution are immediate:

(i) U*(¢?) is a minimum at ¢* = b* for 2< d <4. Near the minimum
UX@") = U*(b}) +(¢° - b})72b3 . (3.542)

There are no other mlmma and dt*/ d¢’>0 always.

(ii) For d=4, U*(¢*)=t*(¢") =0, i.e., only a trivial ( free-field) fixed point exists.
(iii) For small ¢ =4 — d >0, the solution is

U*(¢?) = ? (67 = nAY327Y: . (3.54b)

For 2<d <4, the exponent y, =d —2 is positive (relevant), and all the other y, are negative
(irrelevant). Thus the anomalous dimension v,. of the operator ¢° is given by

Ypr=2-y =¢, (3.54c)

and vanishes as d— 4.

The above analysis is particularly instructive because it shows explicitly that the form of the action is
not invariant in general under blocking transformations. Moreover, the precise way in which the action
is altered under such a transformation depends on the details of the scheme chosen. For example, the
scahng fields gm( p) change in a way [cf. eq. (3.52a)] which depends upon b. Thus, the u [and therefore
U(¢?)] vary in a manner which is determined by the blocking transformation. However the y,, do not
depend upon b. This is a rather important point, and is worthy of elaboration.

When a renormalization group transformation is performed, the original action is mapped into a new
action, which can be considerably different in its functional form. Two important properties should be
preserved however. These are (i) the spacetime dimensionality of the system, and (ii) the symmetry
group of the order parameters which distinguish the phases of the theory. Thus, as the renormalization
group transformation is repeated, the original system is mapped through a series of new systems, which
typically share only these common properties. It is expected that the number of fixed points of the
theory and their associated critical exponents will remain the same. (In particular, the number of
relevant directions at a fixed point should not depend upon the details of the blocking transformation.)
This idea is the so-called “universality hypothesis” [3.11], which says that statistical systems that share
properties (i) and (ii) should also demonstrate the same critical behavior. It is similar to the idea that
the infinite-cutoff limit of a field theory should be independent of the definition of the cutoff. This
contemporary picture of renormalization [1.51] (and the meaning of renormalizability) is reviewed in
ref. [3.12]. The basic idea is as follows: begin with a field theory defined via an action and fixed
momentum cutoff. This action is totally arbitrary, and can contain terms which a power-counting
analysis would indicate are “‘unrenormalizable”. Next systematically integrate out the high-momentum
components in this action; at a momentum scale much lower than the cutoff it will be found that the
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“unrenormalizable” terms in the original action can be accounted for by a redefinition of the
renormalized coupling constants at the lower sale. Specifically, the unrenormalizable interactions
correspond to “‘irrelevant” directions in the flow space of coupling constants as the cutoff is decreased.

The fact that the number of renormalized coupling constants in a field theory equals the number of
“relevant” directions (or directions of instability) at a fixed point is well known [1.51, 3.6]. The reason
is that as the infinite-cutoff limit is taken, it is necessary to adjust as many renormalized parameters as
there are relevant directions in order to reach the critical surface. A more heuristic explanation is to say
that as this limit is approached, the trajectories are followed in a backward direction, and so the critical
surface has as many degrees of instability as there are renormalized coupling constants. Marginal
directions at the fixed point imply that in only one region of coupling constant space another free
renormalized parameter exists; thus there should be a bound on the value of this parameter (see section
5).

The accepted picture of how this comes about can be adumbrated in the fashion of Wilson and Kogut
[1.51] for the case of the simple cutoff ¢* theory eq. (3.1). Consider fig. 3.2. The action S,(A4,) can be
defined in terms of the dimensionless parameters

ro(A)=maA;%,  ug(Ay)=A,A5 " (3.55a,b)

[cf. eq. (3.2)]. Define £,(A,) as the dimensionless correlation length for S,(A,). From the discussion of
eq. (3.7) it is clear that &(e) must be infinite in order that the renormalized mass my, is finite.

The conventional way to achieve this is to give m, a cutoff dependence such that the renormalized
mass m, and coupling constant Ay are cutoff independent as A— . This can be accomplished by the
following procedure. The dimensionless correlation length &(r,, u,) can be defined independently of A,,.
Choose m and define

Ag=mg(ro, uy) - (3.56)

The curve S,(4,) in fig. 3. 2 is generated by fixing the value of u, and solving eq. (3.56) for r,. From
eqs. (3.55) the values of m and A, are determined. The limit A,— » of infinite cutoff is obtained by

Fig. 3.2. Schematic diagram of the predicted flow structure of four-dimensional ¢* field theory.
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letting r,(A,, u,) approach the critical value r,(4,). By eq. (3.56) my is finite and independent of the
initial u,.

In fig. 3.2 the curve Sy(4,) is indicated schematically. (For reasons of clarity, the plot is two
dimensional.) By use of the renormalization group, a set of curves S,(A,) can also be generated. These
curves depict the evolution of the action under the renormalization group transformation

A=A =e A, . (3.57)

The curves S,(A,) can be thought of as defining surfaces of constant “physics”.

For a given A, there is a value of ¢ for which S,(A,) intersects the surface J where £ equals one. Thus
S.(4) intersects J at a point Q,, which describes the same physics as the original action S,(4). Likewise
the action at point Q,, defines the same system as S,,(10). Note that both Q, and Q,, define theories
with the same renormalized mass (sometimes called the “inverse correlation length in physical units”).

As the cutoff A, increases without bound, the trajectory falls closer and closer to the point Q. When
A, 1s infinite, the trajectory proceeds from the point R_ and ends at the fixed point P,. Since P, has one
relevant direction (P,— P,), only one parameter of the theory (my) is free; the other (Ag) is
determined by the details of the flow structure. However, at every stage in the process a finite
renormalized theory exists. Hence the limit A;— o« exists and is independent of u,.

The above discussion makes several simplifying assumptions. First, additional irrelevant interactions
are ignored, though it is easy to see that they do not affect the qualitative details of the argument. It is
also assumed that the fixed point P, has only one relevant direction. This is not known, strictly
speaking, for four-dimensional ¢* theory, since its triviality has not been proved. However, the above
analysis does display much of the machinery of the renormalization group, and how physical concepts
are phrased within its framework.

Given the obvious complexity of the renormalization group, it is sensible to ask whether it is superior
to direct numerical methods of solution. In fact, as is shown below, approximate analytical and
numerical techniques melded with the renormalization group yield a calculational technique of great
potential (the Monte Carlo renormalization group). The difficulty of carrying out the renormalization
group is much less than that involved in solving the model, because the renormalization group is a
transformation of nonsingular parameters and has much more room for approximations.

3.2.4. Approximate momentum-space renormalization group methods

Typically it is not possible to present an exact renormalization group transformatlon for a given
problem. Accordingly, many approximate methods have been developed and applied to ¢ field theory.
These can be separated into momentum-space and position-space renormalization group techniques
according to the criterion used to partition the degrees of freedom of the system. The results of all of
these methods are at least consistent with the idea that ¢ field theory is trivial in four spacetime
dimensions. Several of these procedures are reviewed below.

Wilson’s approximate recursion formula. The first explicit construction of an approximate
momentum-space renormalization group was applied to ¢* field theory by Wilson [3.7]. Although the
approximations used in its derivation (see also refs. [1.5], [3.4] and [3.13]) are highly dubious, it is a
remarkable achievement, and was instrumental in launching the renormalization group approach to
critical phenomena. Even more 1nterest1ng is the fact that improvements to the original approximations
make the end results worse [3.14]. It is evident that approximate treatments of the remnormalization
group are very complicated (and a bit magical).
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The Wilson recursion relation is derived in the above references. The action at iteration number [ is

5,= [ a3 0, + U@, 358)

where /=0 defines the starting point, in a d-dimensional Euclidean volume (. It is assumed that
Uy(¢) = Uy(— $). The momentum components in the theory between A/2 and A are integrated out (A
is the momentum cutoff); thus the transformation has scale factor b =2. It can be shown that

¢ =c, 27" (3.59)

Thus a fixed point only occurs for 7 equal to zero. The recursion relation for the fixed point (= 0)
solution of the potential term U(¢) can be written in terms of Q(¢) = 2U(¢) as follows:

Qr.(¢)= ~2%n{I(¢ - 2174 11,(0)], (3.60a)
19 = [ dyexp(=y’ - HQ, (6 + )+ Q6 ~ ]} (3.600)

Equations (3.60) define a sequence of functions {Q,(#)} = {Qy(¢), Q:(#),...} given an initial
function Q,(¢).

This recursion relation yields the exact gaussian critical exponent (v = ;) in four dimensions, as well
as the exact leading terms in an expansion in ¢ = 4 — d. Moreover, given an initial potential of the form

Uy($) = ad® + bo*, (3.61)

the renormalized potential gradually approaches the trivial gaussian fixed point result U*(¢) =0 in four
dimensions. Specifically, for a large number [ of iterations of the recursion relation, U, /™"

Since the cutoff in the theory is correspondingly rescaled by 2, the approach to trivial free-field
behavior is logarithmic in this scale factor. This behavior is also predicted in other formulations of the
renormalization group (see ref. [3.15] and section 13 of ref. [1.51]). The recursion relation yields the
exact critical exponents for an n-component scalar field theory in the large-» limit for arbitrary d, and
also gives good numerical results for d =2 and 3 [1.51]. A model has been derived [3.14] for which 7 is
not automatically zero at a fixed point; also “hierarchical” models exist for which the recursion relation
is exact [3.16].

The derivation of this recursion relation egs. (3.59, 60) relies upon “‘uncontrolled” approximations.
It is not the first term in an expansion in any small parameter, and it is not obvious how to improve the
calculation. This is a general feature of most approximate renormalization group methods at present.
One can thus only judge the validity of such approximations by comparison with the results of other
techniques (such as those described below). In this respect it does rather well. Nevertheless it is clear
that the present situation is far from optimal.

Renormalization group from high-temperature series. A more accurate renormalization group was
developed by Wilson ([3.17] and section 13 of ref. [1.51]) and applied in an unsuccessful search for a
second fixed point in four-dimensional pure ¢* field theory. The basic philosophy of this approach was
that if a second (and possibly nontrivial) fixed point exists, then the renormalization group flows should
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slow down as the boundary of the domain of attraction of this fixed point is approached. This idea is
illustrated in fig. 3.3. The gaussian fixed point is labelled P, and second fixed point is denoted by P,.
The quartic coupling is labelled #, and w defines another coupling which is irrelevant at the gaussian
fixed point. If 7,,..(u,) is defined to be the time that a given trajectory starting at point u, takes to pass
the gate, then

d(uy) = [dtgme(lflo)/duo]_1 (3.62)

vanishes as u, approaches the boundary of the domain of the gaussian fixed point. In this sense ¢(u,) is
like the original ¢ function of Gell-Mann and Low, or the beta function.

The function ¢(u,) was evaluated [1.51] from a high-temperature series generated by the method of
ref. [3.18]. It was found that the u, axis on the critical surface in the space of initial interactions lies
entirely within the free-field domain. The effect of additional initial interactions (such as ¢°, ¢° ¢° Vo?,
etc.) was not studied. These conclusions are completely in accord with the notion that ¢* is a free field
theory in four dimensions.

Functional integral methods in the momentum-space renormalization group. 1t is also possible to
develop exact functional integro-differential equations which express how the action changes in a cutoff
field theory when an infinitesimal number of high-momentum components of the fields are integrated
out. An example is derived in section 11 of ref. [1.51]. Subsequent work [3.19] based upon this equation
was used to prove rigorously that a non-gaussian fixed point exists in three spacetime dimensions, and
to bound the values of the corresponding critical indices. Similar equations were derived in ref. [3.20]
and used for approximate calculations in ¢* field theory in ref. [3.21]. (No nontrivial fixed points were
found in four dimensions, consistent with the picture generated via the perturbative renormalization
group.) In this approach the difficulties associated with defining an approximate renormalization group
are reduced to the more routine problem of solving a functional differential equation (see also ref.
[3.12]). Indeed, the bold assertion has been made that such equations will “probably be the basis for
most [future] work on the renormalization group” [1.51]. Nevertheless this approach runs into trouble
(as does any momentum-space renormalization group) when gauge theories are included. The reason is
that an infinite number of gauge degrees of freedom are associated with each point in momentum space;
thus singularities are encountered even when an infinitesimal volume in momentum space is integrated
out. This problem can be avoided by fixing the gauge, but then the renormalized action which results
can be wildly noninvariant under gauge transformations. The complexity of the problem thus increases
enormously. These difficulties in fact originally formed part of the motivation for the development of
lattice gauge theories [3.2].

Pa
\
boundary—
gate
E
L - - u
Uo Uoc

Fig. 3.3. Possible topology of pure ¢* field theory in the presence of a second fixed point Py.
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3.2.5. Approximate real-space renormalization group methods

The above-mentioned difficulties associated with the integration of gauge degrees of freedom can be
avoided in the real-space renormalization group (see, for example, refs. [3.22-3.27] and section 5).
Specific applications to spin systems are well reviewed in ref. [3.5]; recall that the limit of large quartic
coupling in a pure ¢* theory is in fact an Ising spin model. The application of such ideas to ¢ * and other
quantum field theories is largely unknown territory, but some promising possibilities are explored
below.

The Kadanoff variational renormalization group. Impressive success in the calculation of critical
exponents was obtained most notably by the Kadanoff variational technique ([3.25], with extensive
further work reviewed in ref. [3.26]). Typically critical exponents for spin systems can be obtained with
this simple analytical formalism to three-digit accuracy. Moreover, it gives the critical exponents of the
gaussian fixed point in ¢* field theory correct to first order in an expansion in & (=4 — d), and thus is
consistent with trivial behavior.

The basic point of this approach is to note that

(e”)sze!%s, (3.63)

where expectation values (---) are computed via the definition

<0>s=z;1fD¢0e‘s, Zsst¢e“S. (3.64)

For a general field theory the partition function Z; cannot be calculated exactly. Suppose, however,
that the partition function for a related problem with action S + AS,

Zs s EJDd’ e a9, (3.65)

can be solved exactly. Then, given a definition of the free energy,
_FS =

e S=Zg, (3.66)
eq. (3.63) implies that

Foas=Fs, (3.67)
provided that

(AS)(=0. (3.68)
Equation (3.68) is easily satisfied (by translation invariance) if AS is taken as an “interaction moving”
operation.

This procedure can be incorporated into a real-space renormalization group scheme which includes

variational parameters in the projection operator used to define block fields. Optimization of the
transformation then leads to a recursion relation which defines a greatest lower bound on the free

energy of the system. Despite an obvious criticism (it is not clear why a good approximate free energy
implies good critical exponents), this approach is highly successful.
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The Monte Carlo renormalization group. The Monte Carlo renormalization group [3.27-3.30] is a
combination of the ideas of the real-space renormalization group with Monte Carlo simulation {3.31]. In
principle it is a technique of great power, for it can be systematically improved to arbitrary accuracy. In
practice, this combination of numerical analysis with judicious approximation can lead to techniques of
some utility in the nonperturbative analysis of quantum field theory.

Operationally the method proceeds as follows. First, a set of original (or “‘site””) configurations is
generated by numerical means according to the distribution

e—s{¢) Dd’ ,

where S{¢} is the original action, defined over the space of the fields {¢}. Next, block fields {¢} are
generated according to a projection operator P[{¢'}, {¢}], normalized so that

[ Do PLie). (o11=1. (3.69%)

The block action S'{¢'} is defined via

e (¢! ZfDdf Pl{¢'}, {¢}]e™*'". (3.69b)

[Note that in a real calculation with scale factor b in d dimensions there are b site fields for each block
field.] Thus the end result is to generate a set of block configurations of the {¢'}. These configurations
are distributed with the weight (3.69b); it remains to extract the block action S'{¢’'} which generates
them. Once the block action is extracted, the block coupling constants which define it can be evaluated
in terms of the site couplings, and the renormalization group flows constructed.

In the first calculation for ¢* field theory [3.29] configurations were generated according to an action

S=-K 2 64+ 2Uy4). Uy)=A$!=f), (3.70)
{ij) i

where (ij) refers to all nearest-neighbor pairs on a hypercubic lattice, each summed once. The system

was divided into hypercubic blocks of b* fields, and the block field ¢’ for each block was defined as

¢’=sign(2 ¢,->(b“’ > ¢f)m, (3.71)

block block

in terms of the b* site fields {¢} within the block. In the Ising model limit of large A the block spin is
thus assigned according to the popular “majority rule” prescription [3.5]. This rule defines the block
Ising spin as the sign of the sum of the spins in the block, i.c., as the same value as the “majority” of
spins.

P It is possible [3.29] to fix all but one of the block fields in such a fashion as to eliminate most
interactions in the blocked system. The remaining block field ¢, then fluctuates according to a
probability distribution

P(¢y) < exp[—U(¢o)] (3.72)
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Fig. 3.4. Block renormalized potential U(¢) plotted versus ¢, taken from ref. [3.29]. Data points are extracted (eq. 3.72) by direct measurement,
while the solid line denotes the curve obtained by evaluation of moments (eq. 3.74).

from which the potential U(¢;) can be extracted. This potential is well approximated by a form
(CARTN(CHRES M (3.73)

where the block couplings A’ and f’ are determined [3.39] from expectation values derived from the
moment equations,

=] d ) ) ’
[ 60i g5 @) =0, n=1.2, (374

In fig. 3.4 U(¢,) is plotted (data points, eq. 3.72) versus the moment-extracted form (solid line eqs.
3.73,74). Thus it can be seen that with a judicious choice of the blocking procedure, the block action
can be approximated by a simple form from which the renormalized couplings can be extracted.
Subsequent calculations with this and other blocking procedures verify this result [3.32]. A flow diagram
for the theory can thus be obtained, and fixed points located. Critical exponents can also be extracted,
in principle to arbitrary accuracy. Again, all results are consistent with triviality in pure ¢* theory.

3.2.6. Rigorous renormalization group methods

Progress has also been made in the development of rigorous approaches to the renormalization
group. One seminal approach is known as ‘“‘phase-cell localization” [3.33]. The basic idea of this
approach is to partition the degrees of freedom of a given system into sets which are finite and
independent. These general ideas have been used by many authors [3.34], and have played a part in
early rigorous demonstrations such as the linear lower bound on the vacuum energy of P(¢), models
[3.35], the renormalization of ¢* field theory in three dimensions [3.33], and in the structure of
estimates in the cluster expansion [3.36]. More recent results include the construction of the two-
dimensional Gross—Neveu model [3.37,3.38]. Other important work was done by Gallavotti and
collaborators [3.39] and by others (see ref. [3.40] for further references).
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One general conclusion of this line of thought is that perturbative renormalizability is neither
necessary nor sufficient for the existence of a quantum field theory. For instance, the (perturbatively
nonrenormalizable) Gross—Neveu model in 2 + ¢ dimensions can in fact be constructed [3.41]. This
model is defined by replacing the free fermionic propagator —(p-y)™" by —|p|°(p - v)™". The theory
lacks Osterwalder—Schrader reflection positivity, however. A similar approach can be used to construct
Ao’ field theory with negative coupling (A <0) [3.42]. This model is metastable and thus also lacks
reflection positivity. (Other efforts to escape triviality by nonstandard formulations of ¢* field theory
are covered briefly in the next section.) Constructions of this form do, however, show that the verdict
on whether or not a theory is trivial should be based upon more information than the meager
knowledge gained from perturbation theory. Further interesting results are reviewed in refs. [3.43] and
[3.44].

Finally, it is interesting to mention a new result [3.45] produced by a novel approach—a ‘““computer
assisted proof”. In this paper it is shown that the hierarchical ¢* field theory has a nongaussian fixed
point in three dimensions. The method used generates a very large number of inequalities which are
subsequently checked and assembled by computer.

3.3. Connections with the historical approach

In the above subsections, the problem of triviality was formulated in terms of the Wilson
renormalization group. Nevertheless, the development of this theoretical structure was preceded by the
so-called ‘historical” renormalization group [1.44-1.50, 3.1]. Although some of this “historical”
formalism has been applied in the above subsections and especially in section 1, a set of definitions has
not been presented. In this subsection the historical renormalization group is outlined, with special
emphasis paid to the connections between it and the Wilson approach. In particular, the relations
between critical exponents and anomalous dimensions are clarified, and such concepts as fixed points,
flow diagrams, and the universality hypothesis are expressed in this formalism.

The analysis begins by studying the theory on the critical surface where the renormalized masses of
the theory vanish. Once this surface is mapped out, equations in the whole critical region can be
developed.

Another idea related to the renormalization group leads to the so-called Callan—Symanzik equations
[3.6]. These are useful for a theory renormalized at w equal to zero, but with a finite renormalized
mass. Here the comparison is between theories with different values of the renormalized mass.
Unfortunately the zero-mass, my— 0, limit is difficult to express in this framework. Because of this
technical problem the Callan-Symanzik equations are slowly being displaced in favor of an expansion
of the renormalization group equations around the critical (zero mass) region. Interested readers can
find discussions of the Callan—Symanzik equations in refs. [1.50] and [3.1]; however, for reasons of
space they are not considered further here.

Finally, using an approach due originally to Zinn-Justin [3.47, 1.50], and closest in spirit to the above
ideas of Wilson, differential equations relating different bare theories with the same renormalized
coupling constants are derived below.

Because of the fact that this review is intended primarily for high-energy physicists (to whom the
historical renormalization group is well known), this subsection is limited to the exploration of parallels
between the Wilson and other renormalization group schemes. Readers interested in further details
may find refs. [3.1] and [1.50] useful.
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3.3.1. Conventions and notation
It is convenient [1.50] to define a scalar field theory in terms of the complete Euclidean Green’s
functions, or Schwinger functions. These are defined via a Euclidean functional integral,

Z(J)=K"' f D¢ exp(—S(qS) + f d% J(x)qs(x)) , (3.75a)

where K is chosen so that

Z(0)=1. (3.75b)
The Schwinger functions G"» )(xl, ..., Xy) are defined implicitly by a power series expansion of egs.
(3.75) in J(x),

Z(J)—N N fd cd% J(x,) T )G, L xy) (3.76)
The connected Green’s functions GEN)(xl, ..., xy) are defined by a generating function,

W(J)=1n Z(J)

= NZO N! fddxl d XN J(x,) J(xN)G(N)(xl, c, N) . (377)

The historical renormahzatlon group can be defined in terms of the one-particle irreducible (OPI)

vertex functions, ' (xl, ...,Xy). These are constructed by a Legendre transformation to a new
variable &(x),

D(x) =3W(J)/8J(x) = {$(x)) . (3.78)
The generating function I'(®) for the ®™(x,, ..., x,) is the Legendre transform of W(J),

@)= f d’x J(x) D(x) — W(J) (3.79a)

N! fd Xy de [P(x,) - G(l)(x1)] o [Py) =GPV (xy, . xy).

(3.79b)
The Fourier transform of I'™(x,, ..., x,) is defined via
B(d)(pl T +pN)F(N)(p1, cees Py)
=(27) 4 f dx, - -dx, exp(i 2% pj>F(N)(x1, e Xy) (3.80)
j=1

Some specific examples of the Green’s and vertex functions are

GP(ky, ;) = (d(k)(k,)) — (k) b(ky)) = GPk,, k) — GOk )G P(k).  (3.81a)
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Translation invariance implies that

GP(ky, ky) = Qm)8(k, + k,))GP(k,),  T'P(k,, k,)=(2m)%8(k, + k,)[P(k,), (3.81b)
where

r'k)=[GPk)]™". (3.81c)

Physical particles are defined by poles in G{”(k), and thus zeroes of I'‘(k).
It is also useful to define ¢*(x) insertions via a source #(x) for this composite field,

1
S—>8- f d% J(x) p(x) + 5 fddx H(x)$*(x). (3.82)
The generating functional techniques outlined above can then be used to define OPI vertex functions
r'“™(q,,...,q,; Py»-..,py) for L insertions of the operator ¢(x) and N insertions of ¢*(x)
[3.48, 1.50]

3.3.2. Renormalization group equations for massless ¢* theory

The process of renormalization is well familiar to field theorists. The basic idea is that, whereas the
so-called “bare” vertex and Green’s function defined above diverge in the limit of large cutoff, it is
possible to define finite renormalized functions. In order to do so it is also necessary to define
renormalized masses and couplings for the theory.

The I'™"" for (N, L) not equal to (0,2) or (0,0) are multiplicatively renormalizable, at least in
perturbation theory. This means that new renormalized vertex functions I'Y"*’(g;, p,) can be defined,

D =z YWz, ™, (N, L)#(0,2) or (0,0), (3.83)
¢ s

where the Z, or Z,» are field renormalization constants determined by conditions described below. The
vertex function I'"*) is additively renormalizable,

oo = (Z¢2)2{F(0,2) - 1], (3.84)

and is finite when I'“* is chosen appropriately. A similar result holds for """,

The renormalized vertex functions I'""’ are written in terms of renormalized masses m; and
couplings Ap. Thus four constraints are needed to define four renormalizations my, Az, Z,, and Z .
These constraints (or ‘“‘renormalization conditions”) are to a large extent arbitrary. Physical results
should be independent of the renormalization group scheme used. It is this independence which, in
part, implies the renormalization group.

The following adumbration of the historical renormalization group follows the work of Amit [3.1];
also see refs. [3.49] and [1.50]. A convenient choice of the renormalization scheme is given by the
equations

me#0: I'P(q,=0)=m}, (3.85a)
(010¢°)I'(q,=0)=1, (3.85b)
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r'd(g,=0)= Ay, (3.85¢)
ret(q,=0)=1. (3.85d)

Additional renormalization conditions like

red(p,=0)=0 (3.85¢)
can be used to fix I'*?.

The renormalization conditions eqgs. (3.85) suffice when the renormalized mass m,, is finite. If my
vanishes (as happens at the critical point when the cutoff is finite) the required renormalization
constants develop infrared divergences. Thus it is more appropriate to employ a different scheme for
the massless theory. An arbitrary renormalization point '’ is traditionally introduced as follows:

my=0: I'Y(q,=0) =0, (3.86a)
(310" )F (g ) ooy =1, (3.86b)
r'Y(g)lse = Ae(#) (3.86¢)
re(a,, ap)lss =1, (3.86d)
IR (p)l ooy =0, (3.86¢)

where “SP’’ means

2

SP: qiz:%l" ’ qi.qj=%“2(48ij_1),
ie.,

(g;+ qj)2 = /sz fori#j, (3.87)

and “SP” means

1,,2

SP: q,‘zz%ﬂz’ 94,4, = s,
p=(q+q,)=p". (3.88)

Equation (3.86a) is usually chosen to apply at zero momentum, though it is also satisfactory at ¢° = u’.
In order to satisfy this equation, the bare mass m, must be adjusted so that the renormalized mass
vanishes [cf. eq. (3.85a)]. Thus m,= my(A,, A) and is not an independent parameter in the critical
theory. Note, however, that m, is in general nonzero, even though the renormalized mass vanishes.

The field strength renormalization constants Z, and Z,. depend explicitly upon u, A, and Ag(u),

Zy=Z,(p/A, u A (1)), Zp=Zp(piA, w A (0)), e=4-d. (3.89)
The bare theory is defined without reference to the scale . Thus, in the limit A—> % [cf. eq. (3.83)]

(1 9181, A2V TEV) =0, (3.90)
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which implies that

[ 910p + B(Ag, 1) 310Ag — §Ny, (Ag, WIS V(55 A, ) =0, (3.91a)
in which
B(Ars 1) = (1 (910)AR(B)s 4> Ye(Ags ) =(p (dlop)In Z,), , . (3.91b)

Both g and 1y, are finite when A—  in d =4. The functions appearing in eqs. (3.91) represent the
results of the A—  limit.
A renormalization group equation can also be derived for I’ L)

[ dldp + B(Ag, 1) = §Nv, (A, 1) + Lyse(Ag, WIS (q;, pis Ag, 1) =0, (3.92)
where
7¢2(/\R7 p)=(—p (d/du) ln(Zd,z))AO . (3.93)

In four dimensions B, v, , and 7, are dimensionless, and so

B=B(A), v =7%A), % =72(A). (3.94)

As always, eq. (3.93) does not include the special cases (N,L) =(0,0) or (0,2). As was pointed out by
Coleman [3.50], egs. (3.91) and (3.92) have an interesting pictorial analogy. The renormalization group
equations can be thought of as describing the flow of bacteria in a one-dimensional channel. Time is
measured by In u, the instantaneous velocity is 8(A), and the anomalous dimensions 7, and 7,. are
(depending upon their signs) source or sink terms.

The renormalization group equation (3.91) can be used to determine the high-momentum behaviour
of the vertex function. For example, dimensional analysis yields the result

TR (pgir Ay 1) = p™ TV (g Ay lp) (3:95)

The combination of eqgs. (3.92) and (3.95) then implies that

A(p)
+d-— N y (A) -
Y (pg,, Ay, p)=p" """ eXP(“ 5 ——;( 5 d)t)F @ (g, A(p), 1), (3.96a)
AR
where
x(®)
dA =B(A 3.96b
s=Inp= BN IA(s)/ds = B(A) . (3.96b,c)
AR

As pointed out in section 1, the existence of a nontrivial theory is related to the presence of zeroes in
the beta function,
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B(A*)=0. (3.97)

The values of A* which satisfy eq. (3.97) are known as fixed points. At a fixed point, the renormaliza-
tion group predicts a simple scaling behavior for the vertex functions. Equations (3.91) reduce to

[1d/dp — 3Ny, (AT (g;, A", p)=0. (3.98)
Equation (3.98) implies that under a rescaling of momenta g,— pgq;,
A s S AP (399)

and in particular [cf. eq. (3.25)]

e (pg, A*, w)=p* 73O (q, A%, 1) . (3.100)
Thus I'Y"? behaves as if each of the fields ¢(x) scaled like
$(x)— p“(x/p) (3.101)

at a fixed point, where
s=di2—1+7/2, n=y,(A)=v; (3.102)
[cf. eqs (3.15)]. That is, each of the fields ¢(x) scales as if it had an additional ‘‘anomalous dimension”

1/2 along with its “engineering dimension” d/2 — 1 (see ref. [1.51]). Powers of u are included in order
to make the dimensionality of the vertex functions come out right. Thus, at a fixed point

I(q, A, p)=Cu'q"™, (3.103)
where C is a constant. Similarly, for the bare functions

r'(q, A, A=C'A"¢"", (3.104)
implying that

Z, (A%, ulA)=C"(unlA)". (3.105)

It is important to point out that the derivation of eq. (3.94) implicitly assumes that B(A) has only a
single zero at A*. If B(A) has a double zero at A* (as happens for ¢* theory at A =0), then near A*

B(A) =a(A— A*)*, y¢()«)=y¢(A*)+y;(/\*)(/\—A*)+---. (3.106a,b)
The prefactor in eq. (3.96a) is

A(s)
em(— g f % d)«> ~p M (In p) N1 (3.107)
AR
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Thus logarithmic scaling violations result from the presence of the double zero in B(A). This double
zero is connected to the fact that A is a marginal coupling near the gaussian fixed point [cf. eq. (3.42) et
seq.]. A further discussion of the implications of marginal operators for scaling violations appears in
section 5.4.

3.3.3. Renormalization group equations in the critical region: The relation between v and vy,

In the above subsection, the renormalization group was formulated for the massless ¢* theory.
Specifically the bare mass m,, of the theory was adjusted to a certain value m_ so that the renormalized
mass m, was zero. The massless theory defines (at finite cutoff A) a critical theory where the
dimensional correlation length ¢ is infinite.

In order to understand further the connections between the Wilson and historical renormalization
group approaches, it is necessary to consider the theory away from the critical point. The bare Lagrange
density has a term

0= i (nd =m0 s o 5 (.108

The difference dm” should be interpreted as the limit of a spatially varying quantity as it tends towards a
constant. When 8m” vanishes, the renormalized mass vanishes as well,

E~mg ~(dm*)7" (3.109)

[cf. eq. (3.11)]. Equation (3.109) describes the way that the dimensionless correlation length ¢ vanishes
at a critical point. The analogy with critical phenomena can be recovered via the identification

om* T-T
— = , (3.110)

m T

C

where T is the “‘temperature” of the analogous statistical system, and T, is its critical temperature. The
fact that & is no longer infinite when 8m’ is finite is implied by the fact that (vide supra) om’ is a
“relevant” coupling at the critical point in the Wilson approach.

Define a new (position independent) variable ¢ by [cf. eq. (3.82)]

t=%m"Z,: . (3.111)

Then it can be shown that [1.50, 3.1]

(1 d/dp + B(A) 3/0A — SNy, (M) + yy2 t 3190) TR = 0. (3.112)
Define
9 =—v,(A%). (3.113)

Then at a fixed point A*

[wd/du — Nn— 0t 3/a)ITY" =0, (3.114)
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which has a solution
F(}iv,o)(qi’ t, FL) — #Nn/ZF(N)(qi’ ;Lt”a) . (3115)

From dimensional analysis

rYO (g, 1, p)y=p" M (p g, 07 07 ) (3.116)
Choose

p=u(tip)? (3.117)
Then

I'Y(q,, t, p)= w(ep? ) F qu Wp’)"], (3.1182)
where

_d+N2-d=7)2

.17
U=

x,=d+N2-d)12, x, , x,=—1/(0+2). (3.118b)

Thus the vertex functions depend only upon the combination ¢;£, with

FocgT1OHD (3.119)
Equations (3.109) and (3.119) together imply that

v'=240=2-1v;, (3.120)
which is the desired result.

3.3.4. Renormalization group equations for the bare theory

An approach which was originally suggested by Zinn—Justin [3.7, 1.50] (and falls closest in spirit to
the ideas of Wilson) is to consider all bare theories which correspond to a given renormalized theory.
Although this implementation of the ideas of the renormalization group is conceptually very different
from the historical scheme outlined above, the resulting equations and their solutions are quite similar.
Thus we shall only give a brief outline of the method.

Recall that the statement of renormalizability is that the renormalized vertex functions I'{Y",

r'Y(q,, A w)=Z52 (A, 1T (q,, Ay, A), (3.121)
have a finite limit which is independent of A as A— . Thus in this limit
[A (310, , =0 (3.122)

(for convenience the critical theory with my =0 is considered). Equation (3.122) implies that
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(A 0194+ B(Ag) 1My = Ny, (AT ™ (q;, A, A) =0, (3.123a)
where
B(A) = AN 0A), ,»  v,(A)=—A(0InZ,/4), , (3.123b)

are finite [1.50] (at least in perturbation theory) as A— ». Because they are dimensionless, they are also
independent of u and A in this limit, and depend only upon A,. Equations (3.123) describe the changes
in the bare vertex function I'") and bare quartic coupling A, requlred to leave the renormalized theory
invariant as the cutoff A is varied. They can be used to denve scaling relations like eq. (3.104) directly.
Note that in contrast to eq. (3.96¢),

A dN(A)IaA = —B(A,) (3.124)

and so here coupling constants flow in a direction opposite to the flow in the historical renormalization
group. Thus as A— o the coupling A,(A) flows (at least for small A,) toward the gaussian fixed point
Ay =0. The resulting scaling at the gaussian fixed point occurs independently of the initial value of
Ag(A); this is an example of the phenomenon of “universality” alluded to above.

In this last subsection the ideas of fixed points, critical exponents, renormalization group flows, and
universality have been shown to be common to both the Wilson and historical approaches. Much of the
work done in the Wilson approach has its parallels in the historical formalism as well. For example,
Wilson’s approximate recursion formula was also derived from a diagrammatic expansion formula by
Polyakov [1.51]. It should be evident that the problem of triviality has a natural place in either setting.
In section 5, the application of these ideas to problems of direct interest to particle physicists (most
notably the standard model of the weak interaction) is discussed. Possible phenomenological implica-
tions of the flow structure of the theory—such as a bounded or predictable Higgs mass—are also
mentioned.

4. Other approaches—Selected alternative views of triviality

In this section a few of the remaining pursuits of triviality are considered. The first two subsections
respectively cover direct numerical simulation and high-temperature series; following these accounts is a
survey of various speculations on ways to construct sensible nontrivial ¢* field theories.

4.1. Direct numerical simulation

The fact that lattice field theories are amenable to numerical solution (see also sections 3 and 5)
implies that triviality can be studied in this fashion. By numerical means it is possible to evaluate the
field strength renormalization and the renormalized coupling constants as a function of lattice spacing a
in a given finite volume. The continuum field theory then arises as the limit of vanishing lattice spacing
is taken [2.1, 4.1, 4.2]. Extrapolation of the renormalized quartic coupling Ag(a) to zero lattice spacing
yields a prediction for its value A (0) in the continuum. If a nontrivial continuum ¢* theory is to exist,
the value of A;(0) in this limit must be bounded away from zero [4.3, 4.4]. (Rigorous upper bounds on
the value of A, have been constructed [4.5]; see also section 2.)
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A landmark calculation of this form was performed by Freedman, Smolensky, and Weingarten [4.6].
The lattice theory is (modulo a few changes in notation) governed by an action defined upon a
d-dimensional hypercubic lattice with N sites on a side,

= 5 S 160 = b(n+ I + amy)* TS + e~ S0, (4.1)

where as usual n denotes a lattice site, i (=1, . .., d) denotes a direction, and (m,, A,) are respectively
the bare lattice mass and quartic coupling constant. Here ¢(n) is a dimensionless lattice field related to
its continuum counterpart ¢(x) by

¢(x)=a'"¢(n). (4.2)

Using standard Monte Carlo techniques, the Fourier transform &(q) of ¢(n) is computed,
$(9)= 2 expliag - n) ¢(n) . (43)

The quantity <$( q) is evaluated at g equal to zero and at ¢ = p=27/Na. An adequate definition of the
renormalized mass is

d
S L CplI (44)

continuum: my’ =
in the continuum, where G(g°) is the renormalized two-point function in momentum space. (Note that
if gauge fields are present, the definition (4.4) is not gauge invariant, as it does not correspond to the
pole of a propagator.) In lattice terminology, eq. (4.4) can be translated as

lattice: - mg” =[($(0)*) = (&P )P (|S(p)I)] " (4.5)
In the free-field limit A, =0, eq. (4.5) reduces to
free lattice: my” = my [(w/N)sin(w/N)] ™. (4.6)

A renormalized momentum-dependent unitless coupling constant was also defined,

Ar(q) = —(Namg )'[{ (0)| () — 3($(0)){|d(@)))/ {|B(g)I*) - (4.7)

Specifically the quantities Ag(0) and Ag(p) were evaluated by these authors. The coupling A, (0) is a
truncated, renormalized connected four-point function at zero momentum. The momentum-dependent
coupling A,(p), by contrast, has one_external leg at momentum p and another at —p. It also differs
from A, (0) by an overall factor of {$(0)*)/(|$(p)|*). A factor of m& * was included in eq. (4 7) to
ensure that A;(q) is dimensionless in arbltrary dimension d. To leadlng order in Ay, Ag(0) =24my"
while in the limit Na— o, A (p)= 24mR *1,, also to leading order in A,.

Accordmg to the philosophy outlined above, the lattice spacing a is sent to zero while the volume
(Na) is kept fixed. In practical terms this means that a series of measurements are made upon a

07
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sequence of lattices with N taking increasingly larger values (so that the lattice spacing a is progressively
smaller). For each value of N, the bare mass m, is adjusted until the renormalized mass equals a certain
value. The value m, = 3.63 (with estimated error of a few percent) was chosen by these authors [4.6].
This choice of my was motivated as a compromise between the simultaneous requirements that the
volume be large and the lattice spacing be small in units of mp'

Once this tuning of m, was achieved, the value of A; was evaluated as a function of the bare quartic
coupling A,. These results are shown in figs. 4.1-4.3 for d = 3 and 4. The contrast between the two cases
is evident—in three dimensions (fig. 4.1) A, appears to approach a nonzero limiting value as the lattice
spacing decreases. This is as expected, for (see section 2) in three dimensions ¢* field theory is
nontrivial. On the other hand, in four dimensions a trivial theory is anticipated. Consonant with this
expectation, A, (0) and Ax( p) approach zero uniformly in this limit (figs. 4.2 and 4.3).

The optimism generated by the apparent ease of producing these results must be tempered with
realistic judgement, however. First, it is well to remember that a complete error analysis of these and
other related results [4.7-4.10] is lacking. Errors arise in such calculations from both systematic effects
(like the finite volume of the lattice) and statistical effects (critical slowing down). It is therefore wise to
repeat Monte Carlo calculations using alternative approaches, such as Langevin [4.8] and microcanoni-
cal [4.11] methods, for in these cases the errors are at least different.

Nevertheless it is exciting to consider the possibilities which open up when these numerical
computations are taken seriously. For instance, one novel result of ref. [4.7] was the finding that the
two-point function was equal to the free-field correlation function. This result was essentially confirmed
in ref. [4.8], where it was found that within error the momentum-dependent field strength renormaliza-
tion Z( p) was equal to one for all measured momenta. These conclusions imply that the renormalized
theory is at best very weakly interacting. Simulations in the broken symmetry phase of the theory [4.9]
yield results which also are consistent with the triviality of ¢* field theory in four dimensions.
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ggl0)

20 40

20

1 | 1 0 1 1 I i
o] 02 04 06 08 10 0 02 04 06 08 10

9,7(50 +9,) 9o/ (50 +gq)
Fig. 4.1. The zero-momentum coupling constant g (0) as a function Fig. 4.2. The zero-momentum renormalized coupling constant gR(AO)
of the bare coupling constant ratio g,/(50 + g,) for (¢*), on lattices of as a function of the bare coupling constant ratio g,/(50 + g,) for (¢"),

size N=3, 6, and 12. Redrawn from ref. [4.6]. on lattices of size N=3, 4, 6, and 10. Redrawn from ref. [4.6].
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Fig. 4.3. The momentum p renormalized coupling constant gg( p) as a function of the bare coupling constant ratio g,/(50+ g,) for (¢*), on lattices
of size N=3, 4, 6 and 10. Redrawn from ref. {4.6].

4.2. High-temperature series

The so-called “‘high-temperature” or ““strong-coupling” series approach has been remarkably suc-
cessful in the calculation of accurate critical exponents and temperatures in statistical mechanics (see,
e.g., refs. [4.12,4.13] for reviews). Much of this work actually concerns the Ising model. However,
since (as discussed in section 3) the Ising model is in the same universality class as single-component ¢*
field theory, the critical exponents should be the same.

The accuracy of this approach is remarkable. For instance, in an early calculation [4.14], Fisher and
Gaunt thus evaluated the free energy and susceptibility for an Ising model on a general d-dimensional
hypercubic lattice. These series (in inverse powers of the temperature) were rearranged in a new series
in inverse powers of the coordination number g (for a hypercubic lattice, ¢ =2d). The critical
temperature of this model can thus be developed in a series

kT B} } _ - B}
ch=1_q1_1§q2—4§q3—213—gq4—133{—gq5---. (4.8)

Reasonable approximations to the Ising model results are obtained even for d =2 or 3 (errors 6% and
1%, respectively) when the series is truncated after the ¢~ ' term. Later calculations [4.15] predicted
that in four dimensions » =0.536 % 0.003 (compare the expected mean-field result » = 3). Of course
this method assumes that the critical exponents vary continuously as a function of spacetime di-
mensionality d. As is discussed in sections 2 and 3, it is now believed that » equals 3 when d >4, and
that only logarithmic corrections to this mean-field result can exist in four dimensions. Logarithmic
corrections are easily missed in this approach if due care is not taken, and can lead to inaccurate
exponents.

Much of the relevant work with high-temperature series involves the use of so-called ‘“Padé
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approximants” [4.16,4.17]. These were first introduced into physics by Baker and collaborators
[4.18, 4.19]; excellent reviews can be found in refs. [4.20] and [4.13].

The main ingredient in the Padé recipe (and here only the simplest and most direct approach is
discussed) is the approximation of a finite series F(z) by a ratio of two finite polynomials. The [L, M]
Padé approximant to F(z) is the ratio of a polynomial P, (z) of degree L to a polynomial Q,,(z) of
degree M,

P(2) _potpz+p2’+ o tp 2t (49)
Gitz)  tFqrrorr ‘

In eq. (4.9) the coefficients p, and g, are chosen so that the series expansion of [L, M] agrees with that
of F(z) through order L + M, i.e.,

(L, M]=

F(z) =[L, M]+ 0", (4.10)

The coefficients so chosen are unique [4,20]. The construction of Padé approximants allows one to form
an approximate analytic continuation of a given series beyond its radius of convergence and up to (or
beyond) a singularity.

In the theory of critical phenomena (and thus in field-theoretic systems) a typical quantity of interest
has a singularity structure for z < z_ of the form

I(2)=(1-2z/z)"](2), (4.11)

where J(z) is analytic at z_. Then, if F(z) is taken to be the logarithmic derivative of I(z),

r

F(z)= di InI(z) = [1+0(z~z,)] asz—z, (4.12)

z z2—1z,
the Padé approximants to F(z) may yield information on the singularities of I(z). If a given
approximant to F(z) has a pole near z_, then the location of the pole gives an estimate of z,, while the
corresponding residue can be used to estimate r. (The reader should be cautioned at this point that the
Padé approximant technology has become a veritable science of its own, and that far more subtle
methods than this one do in fact exist [4.16-4.20].)

The results of the Padé analysis are typically displayed as a “Padé table” [4.16]. If F(z) is known as a

N

power series up to z", the corresponding Padé table is given by the set of approximants:
[0,0] [1,0] [2,0] --- [N, 0]
0,1 1,1} --- N-1,1
0.1 L1 [N=1.1] w1
[0, N]

Often only the results of the Padé analysis (i.e., the pole location and residue) are tabulated in this
form. Usually there are a few “bad eggs”, entries in the table which are radically different from the
others, but the Padé table normally converges with high accuracy. It should, however, be mentioned
that the error analysis for Padé approximants is unfortunately not always an exact science, and a naive
approach can mislead the most careful investigator.

Padé techniques allow one to study the behavior of the renormalized quartic coupling A, as the



D.J.E. Callaway, Triviality pursuit 289

critical surface is approached. By analogy with statistical mechanics, this approach to the critical surface
can be parameterized by a temperature T, which is assigned a value T at the critical surface. In general
(see, e.g., refs. [1.51], [1.50], [2.30], and [4.21]), when T is just above the critical value T, Ag(T) scales
like

Ag ~(T—T.)In(T-T,)|". (4.14)
The power « can be written in terms of standard critical exponents,
k=y+dv-24, (4.15)

where 7y and » are respectively the magnetic susceptibility and correlation length indices, and 4 is the
“gap” exponent.
The fact [4.5] that A is bounded as T— T implies that

k=y+dv—-24=0. (4.16)

(The strict equality « =0 is often called a “hyperscaling” relation.) Moreover, this reasoning implies
that P must be less than or equal to zero when « vanishes. (Recall [1.50, 1.51] that the renormalization
group predicts k =0, P=—1, i.e., that “logarithmic corrections to hyperscaling exist”.) Only in the
case when « and P both vanish can the theory be nontrivial [2.30]. A particularly impressive series
calculation for ¢* field theory was performed by Baker and Kincaid [4.22] (see also refs. [4.23, 4.24]).
They obtained high-temperature series up to tenth order and used them to estimate the dimensionless
renormalized coupling constant. A scaling law of the form (4.14) was assumed, subject to the (very
strong) constraint that P is equal to zero. These authors [4.21] found that x =0.30 +0.04, which is,
however, consistent with triviality. For comparison, direct evaluation of high-temperature series for the
four-dimensional Ising model (again assuming that P vanishes) yields [4.25] k = 0.302 + 0.0038.

Other authors have subsequently reexamined these models and have obtained results consistent with
the renormalization group prediction of triviality (x =0, P = —1) for both pure ¢* field theory [4.26]
and the Ising model [4.27] in four dimensions. It is therefore likely that logarithmic corrections to
scaling cannot be neglected a priori in eq. (4.14), and that the assumption that P vanishes introduces
errors in the evaluation of «.

Triviality has also been studied by the evaluation of the effective potential in a strong coupling series
([4.28], see also ref. [4.29]). Again, the conclusions reached are consistent with the idea that ¢* field
theory is trivial in four dimensions.

4.3. Trying to escape the trap of triviality: The search for loopholes

The importance of the Higgs mechanism in models of elementary particle interactions has provided a
rationale in quests for a nontrivial ¢* theory. It is probably fair to evaluate the present situation by
saying that such endeavors generally should still be considered speculations (albeit entertaining ones).
Further ideas in this spirit are also elaborated upon in section 5 and 3.2.6.

A remarkable philosophy called asymptotic safety has been advanced by Weinberg [4.30] as a way to
evade the obloquy often associated with trivial or even nonrenormalizable field theories (like quantum
gravity). He points out that in a (cutoff) field theory it is necessary to have a rationale for constructing a
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unique model with trivial and/or nonrenormalizable interactions. For instance, it is insufficient to argue
that nonrenormalizable interactions must be eliminated from a field theory because their presence
requires that an infinite number of parameters be evoked. The point is that the attendant logical
prodigality can be rectified by, e.g., demanding that all free parameters in the theory equal unity at a
given momentum scale.

Rather than imposing such a condition ex post facto upon a theory, it is better to have the theory
itself produce conditions for consistency. Asymptotic safety gives such a promise—it is simply the
requirement that the renormalization group trajectories strike a fixed point in the limit of large cutoff
A—, In all cases considered in ref. [4.30], there are a finite number of “ultraviolet-attractive”
eigenvalues at such a fixed point. Therefore, although a cutoff field theory can have an infinite number
of parameters (corresponding to trivial and/or nonrenormalizable interactions), the principle of
asymptotic safety imposes an infinite number of constraints. A finite number of independent parameters
then remains. It is argued that this principle may thus explain or even replace renormalizability (and
ipso facto nontriviality) as a criterion for field theories. See also sections 1 and 5.

Other attempts to construct a nontrivial ¢* theory are often a bit more abstract in nature. Rigorous
discussions of triviality (see section 2) often require that a ¢* field theory is defined as an infinite-cutoff
limit of a ferromagnetic lattice theory. It has been argued [4.31] that this is an asumption whose removal
changes the nature of the problem dramatically. Indeed, no argument appears to prevent the existence
of an interesting nontrivial ultraviolet limit of an antiferromagnetic lattice ¢* theory, even in d > 4. This
remains an interesting open problem.

Another possible route for avoiding triviality is the so-called “scale-covariant field theory” [4.32].
The starting point of the approach is the observation that in certain quantum systems the presence of an
infinitesimal perturbation can cause a discontinuous change in the eigenfunctions and eigenvalues. Thus
the free field solutions are not obtained in the limit of a vanishing perturbation (see also ref. [4.33] for a
discussion of this phenomenon in path integrals). Instead, a “‘pseudo-free” solution is reached. It is
argued [4.32] that nonasymptotically free theories have these pseudo-free solutions and that perturba-
tive expansions ought to be carried out about these solutions.

An idea which is suggested by the pseudo-free solution to the “independent value model” [4.32] is
that it may be appropriate to replace the path integral measure 1, d¢(x) by

dé(x)

) 4.17
o) *.17)

in the definition of a scalar field theory. When the (classically invisible) parameter B equals one, the
measure is locally invariant under the scale transformation ¢(x)— s(x)¢(x). For certain values of the
parameter B, the O(N)-symmetric ¢* model defined with the measure (4.17) is nontrivial [4.34]. Early
numerical work [4.32] suggested that scale-covariant ¢* theory is trivial, but subsequent work disagreed
with this conclusion [4.35].

It has also been noted [4.36] that by the use of an unconventional lattice regularization scheme in
which irrelevant “phantom field interactions” (such as d>6, ¢° etc.) are included in the action, a
nontrivial ¢* theory can be generated. Alternatively [4.37], a variational constraint can be applied to
give an unusual *“precarious” theory. Other approaches have also been tried [4.38-4.42]. It is probably
fair to say that such ideas, although interesting, do not necessarily lead to a viable alternative to the
canonical standard model. Time will tell.
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5. Relevance for high-energy physics: Can elementary scalar particles exist?
5.1. Triviality of Higgs fields coupled to other theories

The study of triviality in pure ¢* theory, as discussed in the preceding sections, is an interesting
abstract problem. The question of whether scalar fields coupled to gauge theories are nontrivial is of
paramount importance to our understanding of the weak interaction, for great effort is being expended
in experimental searches for Higgs particles. Indeed, it can be argued that the question of the existence
of Higgs particles is presently the greatest unresolved mystery in elementary particle physics, since they
are at the heart of the standard model of the weak interaction.

As suggested by the discussion in the first section, if a theory is completely asymptotically free (i.e.,
asymptotically free in all coupling constants), then it is almost certainly a nontrivial theory. Simple
calculations are sufficient to show that (at least in perturbation theory) completely asymptotically free
theories do exist; these are reviewed in subsection 5.2. Unfortunately, “realistic” models theories of the
weak interaction are not completely asymptotically free in general. With the exception of the so-called
“eigenvalue” theories (reviewed in subsection 5.3) it seems that at least one coupling constant must be
asymptotically nonfree in order to produce a realistic theory. Such a theory may still possess an
ultraviolet-stable fixed point at values of the coupling constants for which perturbation theory does not
well approximate its beta functions. It is for this situation that Monte Carlo renormalization group
techniques were developed and applied to the standard model of the weak interaction. These methods
and the results they produce are reviewed in subsection 5.4. Finally it is worth asking the question of
what may be learned by considering the standard model as a low-energy effective theory. This
viewpoint is discussed in subsection 5.5.

5.2. Complete asymptotic freedom in theories with Higgs particles and gauge fields

Given the likelihood of the triviality of pure ¢° field theory in four dimensions, it may come as a
surprise that perturbative ultraviolet fixed points do exist in four-dimensional theories with Higgs
scalars, implying that at least some Higgs theories are nontrivial. At the present time the only fixed
points which have been found in the domain of validity of perturbation theory are those for which the
theory is “‘completely” asymptotically free, i.e. asymptotically free in all couplings. It is not known
whether fixed points with couplings small enough for perturbation theory to be valid also exist, although
there is no known reason why such theories should not also exist. Thus in the next sections the focus is
upon the phenomenon of asymptotic freedom in theories with elementary scalars.

Asymptotic freedom in non-Abelian gauge theories was first discovered by several authors [5.1]. This
remarkable phenomenon had been anticipated [5.2] in models of the strong interaction based upon the
observation of Bjorken scaling in deep-inelastic electroproduction experiments at SLAC. Subsequently
(5.3] it was shown that no renormalizable theory can be asymptotically free in perturbation theory
without the introduction of non-Abelian gauge fields.

The property of complete asymptotic freedom in systems with Higgs particles coupled to gauge fields
was then discovered [5.4] and shown to exist in a number of theories [5.5], including supersymmetric
field theories [5.6]. Complete asymptotic freedom in systems which also include fermions coupled to the
scalars has also been found [5.7]. This last case leads to the “eigenvalue” theories discussed in the next
subsection.

In all cases, these theories were discovered by looking for systems in which all of the running



292 D.J.E. Callaway, Triviality pursuit

coupling constants of the theory approach a fixed-point value as the renormalization point is decreased
(i.e., as the “momentum transfer” increases without bound). The input required for such computations
is the set of beta functions for all couplings in the theory. The evolution equations for a general theory
involving scalars, spin-1 fermions, and vector gauge fields are given in ref. [5.5] to one-loop order, and
in ref. [5.8] to two-loop order. The latter references also contain an extensive review of numerous
higher-loop calculations of other quantities. A somewhat general method for locating fixed points in
perturbative beta functions is given in ref. [5.9]. It has also been suggested [5.10] that if the bare quartic
coupling constant of a theory vanishes, an asymptotically free theory may result.

Before examining the phenomenon of complete asymptotic freedom in specific theories it is useful to
list the beta functions for the most general renormalizable theory constructed from hermitian gauge
fields A, real scalar fields ¢,, and spin-3 fields ¢,. By assumption this theory is locally gauge invariant
under some simple compact Lie group G with structure constants C**. The Lagrange density of the
theory is given by

L=-iF, F* +}(D,8)(D"®), + §y"D, ¢ — ymop — yh ., ~ V($), (5.1)
where V(¢) is a quartic polynomial in ¢,

V(d) =3 fy.,:4;9.4 + lower order terms, (5.2)
and where

a a a abc

F,,=dA,-d,A,—gC AHAV , (5.3a)

(D,¢),=0,¢ +igh A, , (5.3b)

(D), =3d,¢, + igtzﬁdlﬂAfL . (5.3¢c)

The beta functions of the theory describe the response of the various couplings in the theory when
the renormalization point w at which the couplings are defined is changed to ue™". The equations apply
in the deep Euclidean region where all dimensionful interactions (mass terms and superrenormalizable
interactions) are ignored. The couplings are defined by the requirement that they are equal to the
couplings which appear in the Lagrangian, defined at the symmetric points p’ = —u’. To one-loop order
these beta functions are gauge independent [5.11] and are given by [5.5]

||I

1677 38 = _[145,(G) - 48,(F) - 15,(5)) =~ 1b,g’ = 16778, (5.42)

dt

dh, ap o
167° * =2h,hh, + S (b + by h,) + 2Te(hhy, by, = 3200t + S,(F)h)g’

1
+ W ijklfjklmh'm = 167723}: ) (5.4b)

167

df.;
: d)tkl =fijr'ln fmnkl + f;‘kmn fmnjl +f;‘lmn fmnjk - IZSZ(G)gz‘ﬂjkl

+ 3Aijklg4 +8Tr(hh,,) fuja — 12H = 167723f , (5.4¢)
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where

Ajy=alay +aial +alal, af={6%0",, (5.5)
and

H,, = % Tr[hh e, b} + By, )+ B{h, R, (5.6)
with

CiC=8,(G)6”, (1), =S,(F)8,;,  (8°6%),=S8,(5)8,, 5

Tr(t't") = S,(F)6“",  Tr(8°9")=S,(S)6" .

Equations (5.7) define constants S,, S,, and S, which depend only upon the group (G) and the
respective representations of the fermions (F) and scalars (§). The fact that the tensor f, ikl is totally
symmetric has also been used. Shifting the scalar fields to have vanishing vacuum expectation values
and give masses to the gauge particles and fermions only affects superrenormalizable terms in the
Lagrangian. The renormalization group equations are thus unaffected by the presence of spontaneous
symmetry breaking. (More generally, it has been shown [5.12] that if a theory exhibits both complete
asymptotic freedom and spontaneous symmetry breaking, the Green’s functions in the deep Euclidean
region are the same as those of the symmetric theory.)

Some intuition for the nature of the solutions of these equations can be developed by the exploration
of specific examples. Consider (following ref. [5.5]) the case of an O(N) gauge theory interesting only
with a single fundamental (i.e. vector) representation scalar. The most general O(N)-invariant quartic
coupling can be written [cf. eq. (5.2)]

V(6)=}A-¢) . (5.8)
The renormalization group equations for A and g are

167° d—’\ =(N+8)A*-3(N-1)g’A+ 3(N-1)g*, (5.92)

167 (g) ~by(g)?, (5.9b)

with the initial conditions A( =0)= A, g’(t=0)=g%. It is natural to define new variables

N+8 A
2

ds= g dr, ={, 5.10
167" g (5.10)

so that (imposing the condition that s vanishes when ¢ does)

e” -1 =(g§(N+8)>t

€ 167>

(5.11a)
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g =gre ™, (5.11b)

df/ds=({-{)({-¢), (5.11¢)
with

e=b,/(N +8). (5.11d)

Solutions of eqs. (5.11) exist for which both A and g’ are asymptotically free, i.e., where A and g’
approach zero as ¢ (and therefore s) increases without bound. In order to produce this behav10r b, must
be positive and the roots . must be real. It is thus most advantageous to choose b, as small as p0551ble
(while remaining positive). This can be accomplished by adding fermions to the theory The results do
not change significantly if b is set to zero. The requirement that the roots ¢, be real then forces the
discriminant of the quadratic equation (5.11d) to be positive,

3(N-1)(2N -11)>0. (5.12a)

Assume that eq. (5.12a) holds, and choose {, to be the larger of the two roots £, . Then as ¢ increases
without bound, eq. (5.11c) implies that

(=0, fL<¢, (5.12b)
{=¢., f&=¢,.

[Note that corrections to eq. (5. 12b) are of higher order in g°, and thus presumably vanish in the limit of
large ¢.] The fact that { = A/g” approaches a fixed ratio in this limit implies that A and g’ are both
asymptotically free if {, = {, and b,>0; and thus the theory is presumably nontrivial.

It is interesting to note that if the “spontaneously” generated mass of the gauge bosons is denoted by
my, and the mass of the scalar particle is denoted by m,,, eqs. (5.12b) imply the bound [5.13, 5.14]

(mylmy)' < ¢, (5.13)

(again, to lowest order in the loop expansion). Equation (5.13) assumes that no further fixed point
exists. Upper bounds on the masses of Higgs particles in more general theories may arise from the
requirement of a nontrivial Higgs sector and are dlscussed in subsection 5.5. The analysis leading to eq.
(5.13) suggests that gauge fields can rescue a pure ¢* theory from triviality, and that the requirement
that the full theory be nontrivial may generate experimental predictions.

What is the group structure of models with complete asymptotic freedom? From eq. (5.12a), it
follows that N must be at least six for complete perturbative asymptotic freedom to occur. Yet in an
O(N) gauge theory a single fundamental representation scalar breaks the gauge symmetry only from
O(N) to O(N — 1), so that only in an O(2) gauge model is the symmetry broken completely. For this
example of an O(N) gauge theory, the smallest group which can be completely asymptotically free is
O(6). The gauge group is spontaneously broken to O(5) [5.5] and there are still ten massless gauge
particles corresponding to the generation of the remaining non-Abelian O(5) group.

This observation seems to be part of a general pattern—if the theory is completely asymptotically
free, there are a large number of massless gauge bosons present, corresponding to a large non-Abelian
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subgroup which remains unbroken. Exceptions to this rule include the “eigenvalue” theories discussed
in the next subsection, in which every renormalized coupling in theory is determined, and in which
complete asymptotic freedom and complete spontaneous symmetry breaking can coexist.

Further examples are useful in order to make this behavior explicit. A more general case of the
above theory occurs when an O(N) gauge theory is coupled to M different fundamental representation
scalars. The minimum critical value for complete asymptotic freedom in an O(N) gauge model, N (M),
is given in Table 5.1 as a function of M. Note that in each case the O(N) gauge symmetry is broken to
O(N — M). For large N, complete asymptotic freedom occurs for M < N — 1= N. Thus again it is seen
that these two phenomena are generally incompatible with one another. Nor does the pattern seem to
change if [5.5] second-rank tensor representations of Higgs fields are used (table 5.2), or if [5.11,5.5]
the gauge group is SU(N) (tables 5.3,5.4). In all cases the Higgs mechanism fails to remove the
infrared singularities, and in no case is the gauge group broken down to an ultraviolet-stable Abelian
symmetry. Moreover, the situation becomes progressively worse for scalars in higher group representa-
tions, since [5.5] the contributions S,(G) to the running gauge coupling (5.4a) have the right sign and
are proportional to N for both O(N) and SU(N), while the scalar contributions S,(§) have the wrong
sign and are proportional to N*~' for scalars belonging to kth rank tensor representations. Thus for
large enough N, a tensor higher than the second rank ultimately must destabilize the gauge coupling
and prevent complete asymptotic freedom.

In order to form a complete model of the weak interaction, it is necessary to consider the effects of
Yukawa couplings. These couplings are generally driven to zero at least as fast as the gauge couplings at
a fixed point where complete asymptotic freedom occurs. Thus the Af” terms in the evolution equation
(5.4b) can be dropped. This behavior can be seen [5.5] from the evolution equations in a case where
only a single Yukawa coupling is present,

2 dh

167 T =

AR’ - Bg’h (5.14)

where A and B are positive constants which depend upon group-theoretic factors. If a new variable
h=h/g is defined, then eqs. (5.14) and (5.4a) imply that

167 di - ~
p E=h[h2—(B—b0)]. (5.15)

Table 5.1
Minimum value N, for complete asymptotic freedom in an
O(N) gauge theory with M fundamental representation Higgs

particles
: Table 5.2

M N, Symmetry breaking Minimum value N, for complete asymptotic freedom in an O(N)
1 6 O(N)-»O(N-1) gauge theory coupled to tensor representation Higgs particles
2 7 O(N)->O(N-2) Re ;
3 7 O(N)— O(N - 3) presentation N,
4 8 O(N)-O(N—-4) Antisymmetric second-rank tensor 8
5 9 O(N)—->O(N-35) Antisymmetric second-rank tensor
6 10 O(N)->O(N-6) + fundamental scalar 9
7 11 O(N)=>O(N-17) Symmetric second-rank tensor 14
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Table 5.3
Minimum value N, for complete asymptotic freedom in an SU(N)
gauge theory with M fundamental representation Higgs particles

M N Symmetry breaking Table 5.4

1 3 SU(N)—>SU(N-1) Minimum value N, for complete asymptotic freedom in an
2 4 SUN)—SUN-2) SU(N) gauge theory coupled to tensor representation Higgs
3 5 SU(N)—SU(N -3) particles

;‘ 9/ 232%3: 28& _ g Representation N,

6 8 SU(N)—SU(N - 6) Adjoint 6

7 10 SU(N)—SUN-T7) Adjoint + fundamental 7

8 11 SU(N)—SU(N - 8) Symmetric tensor 9

The fixed point at h equal to zero is ultraviolet stable, so h(f) vanishes faster than g(¢) for large ¢,
provided that

B>b,, hi<(B-b,)g’. (5.16)

The conditions eqs. (5.16) are easily enough satisfied, and imply that the Yukawa couplings can be
neglected in the consideration of theories which are completely asymptotically free, provided that the
Yukawa couplings are not too large.

A second possibility is that

hy = (B~ b,)gx , (5.17a)
in which case
dh/dt=0. (5.17b)

Specific solutions [of the general form eqgs. (5.17)] do in fact exist in coupled systems involving gauge,
quartic, and Yukawa couplings. These “‘eigenvalue” solutions (discussed in the next subsection) require
that specific relations exist between all renormalized couplings in the theory.

5.3. Eigenvalue conditions for asymptotic freedom in models of the weak interaction

Probably the simplest example of a theory whose coupling constants have evolution equations
possessing [5.7] an “‘eigenvalue” solution for asymptotic freedom is the Georgi—Glashow model of the
weak interaction [5.15]. In this model the electron and its neutrino are combined with two new heavy
particles: a charged lepton, E*, and an uncharged lepton, X°, to make left- and right-handed SO(3)
triplets. Similarly, heavy leptons M* and Y° are added to make muon triplets. This model possesses
only two charged weak gauge fields (denoted W) and the electromagnetic gauge field A, . Since it
therefore fails to account for neutral weak leptonic currents, it is not a viable candidate for a realistic
model of the weak interaction. Nevertheless, it does provide an example of the idea of eigenvalue
conditions for asymptotic freedom.

Define the quartic coupling constant A by an interaction Lagrange density for the scalar field,
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L(¢) = -}% o' (5.18)

Denote the vacuum expectation value of the scalar field by v, and the »—X, mixing angle by ..
Similarly, define 6§, to be the corresponding muonic mixing angle. Then four Yukawa couplings
(h,, h,, H,, H,) can be defined in terms of particle masses by

mg+ —m,- =2vh,, (5.19a)
h,v

= .19b

X"~ Sin 6,’ (5.190)

My —m,- =2vH,, (5.19¢)
H,v

5.19d

Y™ sin g ( )

The lowest-order equations for the evolution of the couplings are then given by [5.7]

2

t6m* %6 = —pygt= (4 - $(2) - 3(1)Ig' = - Vg, (5.200)
dh;

16" —t = 16h] + 4K, (2H + H3) + hihy - 24k, (5.20b)
dh;

l6m® P = 12h; + 4W3(2H; + H3) + 2hih; — 12¢°h;, (5.20¢)

% _ Ela‘?;: _0. (5.20d)

167° % = Y 2%+ (16h} + 8h; + 16H: + 8H> — 24g*)A + 72g* — 96(h? + HY) — 48(hs + H?) .
(5.20e)

The equations for H and H; are obtained from egs. (5.20b) and (5.20c) by p—e symmetry.
Asymptotically free eigenvalue solutions exist for which

hi=kg*, H?:Klgz, A= Ag’

(5.21)
hy=kyg", H§=K2g2,
and k,, k,, K;, K,, and A are numerical constants. One solution is [5.7]
k, =K, =(324-11b,)/334, k,=K,=(34-7b,)/167, (5.22a,b)

while the constant A is given by the positive root of the quadratic

YA+ (32K, + 16K, — 24+ b)) A — (192K% + 96K, - 72) = 0. (5.22¢0)
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Equation (5.22c) possesses such a positive root provided that 192K} + 96K, > 72, which is amply

satisfied in a purely leptonic theory. Corrections to eqgs. (5.22) can be expressed as a power series in g
[5.7],

W= K(U)g2 + K(l)g4 + K(z)g6 4 (5.23)

The solution (5.22) of the evolution equations has the property that all of the renormalized
parameters of the theory are determined from two constants, which can be adjusted to fit experimental
data. In the Georgi-Glashow model, p—e symmetry is strictly observed. It is therefore appropriate to
use as input an “average” mass for m =m, =0.053 GeV. If the gauge coupling g, =g(:=0) is
identified with the electromagnetic coupling constant, the “physical” predictions [5.7]

Mew=myw=334GeVIc*,  my.=3.58GeV/ic>,  6=0.0669(1—0.001/0.97),

My =my. =6.64GeVIC, A =3.523 (5.24)
are generated. Note that heavy leptons with masses of the order of magnitude of the W are predicted.
The existence of heavy leptons is a typical feature of eigenvalue theories.

It is important to point out that other eigenvalue solutions to the evolution equations also exist.
These solutions have zero eigenvalues, and are given by [5.7]

() Kk, =K,=1-b/24, k,=K,=0, (5.25a)

() k=4 —Zb,, K =(40-11b,)/236, k,=0, K,=(24-7b,)/118,

(I) k,=0, K, =(2268-77b,)/1491,  k,= (4032 —413b,)/1491 , (5.25)
K, = (180 — 14b,) /213 . (5.25¢)

[Two other solutions exist, which are p <> e mirror images of (II) and (II).] These solutions predict
unphysical behavior [e.g. (III) implies that the heavy lepton E™ is degenerate in mass with the
electron]. Moreover, solutions exist for which h?/ g’ approaches a constant but hf/g2 vanishes like a
power of g° when g° approaches zero [5.7]. However, no ultraviolet-stable solutions of the form (5.11)
exist—in all cases perturbative asymptotic freedom occurs only when certain relations between the
renormalized couplings of the theory hold. The “eigenvalue” fixed points are thus ultraviolet unstable—
small perturbations in the parameters k,, k,, K;, and K, move the theory away from the fixed point. It
is not known whether other (nonasymptotically free) fixed points exist. If they do not, then this theory
provides an example of a case in which the requirement of a nontrivial theory allows one to predict the
masses of various particles.

The Georgi—-Glashow SO(3) model is not the only theory for which such eigenvalue conditions exist.
Eigenvalue relations for complete asymptotic freedom have also been derived in theories whose gauge
symmetry group is SU(2) [5.16], SU(3) [5.17], SU(2) X SU(2) x SU(4) [5.18], SU(S) [5.19], SO(N)
[5.20], and E [5.21]. Thus it can be seen that the idea of eigenvalue solutions at a fixed point is quite
general.

The discussion in the above two subsections makes it clear that gauge fields may well turn a trivial
pure ¢* field theory into a nontrivial coupled system. Ultraviolet-stable fixed points [like those in eq.
(5.11)], and ultraviolet-unstable (eigenvalue) fixed points can appear in coupled systems, even though
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none existed in the pure scalar theory. Since these fixed points correspond to asymptotically free
theories, the dynamics of the system can be analysed perturbatively.

In order for a field theory to be asymptotically free in perturbation theory, non-Abelian gauge fields
must be present [5.3]. This statement is an oft quoted result, but implicitly assumes that the quartic
self-coupling f, in eq. (5.4c) is a positive-definite tensor such that the energy spectrum is bounded
from below. This requirement is less obvious in a system where other fields are coupled to the scalars
[5.22]. Arguments based upon the renormalization group, however, do suggest that such a constraint is
needed [5.23].

As discussed above, complete spontaneous symmetry breaking (where the remaining unbroken
subgroup is Abelian) is not in general consistent with complete asymptotic freedom. Realistic models of
the weak interaction therefore generally require at least one coupling constant to be not asymptotically
free. In order to determine whether or not such a theory is nontrivial, a computational framework must
be developed which is independent of perturbation theory. One viable scheme is provided by the
application of the renormalization group to lattice gauge theories, and is discussed in detail in the next
subsection.

5.4. Nonperturbative renormalization group analysis of the standard model: Is the Higgs
mass predictable?

In the last subsection it has been pointed out that the study of triviality in theories like the standard
model (where at least one coupling is not asymptotically free) requires nonperturbative methods.
Lattice gauge theory [5.24-5.26] provides a framework for such an analysis, since the ultraviolet cutoff
(the lattice spacing) is defined independently of perturbation theory. References [5.24-5.32] review the
tenets of the discipline, while ref. [5.33] presents an introduction to the subject for nonspecialists.

To these lattice gauge theories, it is possible to apply the Monte Carlo renormalization group
([3.23,3.2], also reviewed in section 3). The basic idea is that in a lattice gauge theory a continuum
limit requires a divergent correlation length (i.e. a vanishing lattice spacing) and thus must occur (if at
all) at a phase transition of second or higher order. Any continuum limit therefore lies on a critical
surface. Thus an analysis of these limits is a study in critical phenomena, for which this renormalization
group was developed (see section 3).

Recall that in this renormalization group the original system is divided up into “blocks” or groups of
variables. This new “block” system is governed by an action defined by a set of block coupling
constants { K'}, just as the original action is defined by a set of couplings {K}. As the system is blocked
repeatedly, a set of “flows” {K}— {K'} = {K"}— - is mapped out for all {K}. If the starting {K}
are on a critical surface, the block couplings {K'} will also be on a critical surface, since under the
blocking transformation (by a linear scale factor b)

{K}— R,[{K}]={K"} (5.26a)
and the dimensionless correlation length ¢ scales according to
bé{K'} = ¢{K} . (5.26b)

Thus if ¢ is infinite, it will remain so under a blocking transformation.
As the blocking transformation is applied repeatedly, the degrees of freedom of the system are
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progressively integrated out, and the coupling constants typically flow towards fixed points. At such
fixed points, {K'} = {K} = {K*}, and so by eq. (5.26b) the dimensionless correlation length ¢ is either
infinite or zero. From the flows in the neighborhood of a critical fixed point (specifically from the
eigenvalues of the derivative matrix D,, = dK./dK,) the anomalous dimensions of the field theories
defined on the critical surface associated with the fixed point can be determined. A trivial theory should
have vanishing anomalous dimensions.

A second important point is that (as discussed in section 3) the number of relevant parameters for the
continuum theories associated with a given fixed point is equal to the number of its independent
renormalized couplings. Here, the word “relevant” refers to the number of directions in which the
renormalization group trajectories flow away from the fixed point. Thus if the number of relevant
couplings for a fixed point is less than the number of renormalized coupling constants (i.e., if at least
one direction is irrelevant) then one or more of these renormalized couplings in the continuum theory
can be calculated from the others.

This quantum “parameter reduction” [5.13] occurs in the pure ¢* case at the gaussian fixed point,
where the quartic coupling constant is irrelevant and thus calculable (in this case it is zero). Another
example of the phenomenon of a “‘measure-zero” fixed point occurs in the eigenvalue theories discussed
in the last section. Moreover, if a nontrivial continuum limit of the lattice standard model exists and if
(as is predicted by universality) the quartic coupling is irrelevant at this fixed point, the standard model
Higgs mass can be predicted from the other parameters of the theory.

5.4.1. The lattice standard model

An important consideration in the analysis of the nonperturbative renormalization group structure of
the weak interaction is the definition of the lattice standard model. The version discussed here
[5.34,5.35] is the simplest formulation in the tradition of Wilson [5.24]. Further analyses of the full
standard model using other lattice formulations should clearly be performed (see refs. [5.36] in this
regard).

In the lattice standard model considered here, the fermionic sector of the model is neglected. This
simplification may be impossible to avoid, for the inclusion of chiral fermions in a lattice theory is an
extraordinarily difficuit problem [5.36,5.29]. If only light fermions are considered, however, the
associated Yukawa couplings are quite small (e.g., ~107" for the electron) and are arguably negligible.
Fermions whose masses are an appreciable fraction of the ~200 GeV mass scale of the weak interaction
may require further consideration.

The bosonic sector of the lattice standard model can be defined by the partition function (the
vacuum-to-vacuum transition amplitude) [5.34],

Loy .=z zf [H dU][H dv][l_[ d<D+][H dtp] g Swr (5.27a)

where
Svar =BS; + B8, + 8, + 8y, (5.27b)
$,(U)= 2 (1-ReU,,,), (5.27¢)
S,(V)=2 (1-4TrV,,), (5.27d)

plaq
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SJ(U,V, @)= 22 Re(®, U, ,V, . ®,..), (5.27¢)

n,v
S (D)= A2 (P D, — k). (5.27f)
Here, Uplaq and V. denote path-ordered products of links U, , and V, , defined in the fundamental

representatlons of the groups U(1) and SU(2), respectively. The links connect lattice site n to lattice
site n + w (u is a direction, n a lattice coordinate). Specifically,

U-+-

np

U

plag

=0, U U,

ntu,v

V. =V.V., V. V" (5.28)

n+v,p plaq np ntp,v’ ntvu’ np?

where p and v represent orthogonal directions. The sum refers to a sum over all such elementary
plaquettes in the lattice.
The link U, , can be written as a pure phase,
U,,.=exp(if, ). (5.29a)

The Haar measure for this compact Lie group is

[ de
= | 2& 5.29b
.[dU"’“ :,’ 27 ( )

Similarly, the SU(2) links {V'} can be parametrized in terms of the 2 X 2 Pauli matrices o and the
identity matrix 1

V=a)l+a o, (5.30)
where a, is a four-component object satisfying the relation
a—aa =a+d =1, (5.31a)

so that all V have unit determinant. The Haar measure for the group can then be written [5.37]
d‘a
f dv= f o 8d-1). (5.31b)
The scalar field @, is a complex (I, = 3, Y =1) Higgs field associated with each site n,

&= (i;) . (5.32)

The model defined by egs. (5.27)-(5.32) has [5.34] the correct formal continuum limit of the standard
model, provided that the definitions

Bi=1llgl, B,=4lg; (5.33)

are made, with g, and g, the bare lattice gauge coupling constants for the U(1) and SU(2) gauge
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groups, respectively. The coefficient of the ¢ "¢ term in the Lagrange density is —2A« (in units where
the lattice spacing is unity), with A the bare lattice quartic coupling.

It is useful to introduce the simplification of a fixed-length lattice scalar field. This reduction is
equivalent to taking the limit of large A in eqs. (5.27). Since the resulting (fixed-length) model is in the
same universality class as the variable-magnitude model, this simplification should not affect the critical
behavior of the model. Following the rescaling @ — v« @, the action is given by

S=8,S,+B,S, + xS, , (5.34a)
where
S.=-22Re(®;U,,V,.®,.), (5.34b)
nyp

subject to the constraint

@ - =1 foralln. (5.34c)

This theory possesses [5.34] three phases:

(1) a confined phase, in which the free energy required to separate a pair of test charges increases
without bound as the separation between them grows;

(2) an electrodynamics or “Coulomb” phase, where interparticle forces between test charges obey
Coulomb’s law; and

(3) a “Higgs” phase, where spontaneous symmetry breaking occurs.

5.4.2. The SU(2)-Higgs limit model

Before discussing the structure of the renormalization group flows of the full standard model, it is
worthwhile to exhibit the formalism in the simpler case of the SU(2)-Higgs model. This model is the
limit of the fixed-length model described by the action egs. (5.34) in the limit where B, increases
without bound (i.e., where the U(1) gauge coupling g, approaches zero). It is a theory with only
clementary scalar fields and SU(2) gauge fields, and is described by an action

SU(Z) =65, + KSL’ (5.35a)
where

L= 2 Re(2,V, ,P,..) (5.35b)

with the other conventions as established previously. This and related models have been studied
extensively by several authors [5.38-5.43].

The most relevant feature of a lattice gauge theory is its phase structure, since a divergent correlation
length (and thus a phase transition of second or higher order) is required for a continuum limit. Some
interesting properties of the phase structure of this theory are known. First, in the large-B, limit of
vanishing SU(2) gauge coupling, the theory becomes a nonlinear sigma model with O(4) symmetry.
This model has a phase transition at a critical coupling «..
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The exact value of this critical coupling «, is not known, but a rigorous lower bound is provided
[5.44] by the mean-field theory estimate,

2k, =By =1, (5.36)
while a rigorous upper bound is given by [5.45, 5.34]
2k, = By <0.622. (5.37)

Additionally, an expansion in powers of the inverse coordination number g~ (for a hypercubic lattice
q = 8) yields [5.46, 5.34]

2k, = By =0.6055+0(q™°%), (5.38)

where the ¢~ term makes a fractional contribution of 5x 107 In eqgs. (5.36)-(5.38) the connection
with the standard notation B,, associated with the XY model has been made explicit.

The phase transition itself is of second order, with » = 3. Thus the anomalous dimension ¥, of the
operator @° is zero (see section 3),

Ypr=2—-v"'=0. (5.39)
The specific heat C(7) diverges weakly as [5.47]
C(7)~log(log(7)), 7=|(k—«.)/k|. (5.40)

in the limit of small |7|.

Evidence from numerical and other approximate methods suggests that there is a strong phase
transition extending from this point (labelled “G” in fig. 5.1) into the interior of the phase diagram
[5.38-5.43]. This line of phase transitions ends at a critical point (labelled “M” in fig. 5.1). The order of
this phase transition remains an unknown and controversial issue, although it is probably fair to say that
it is a first-order transition or possibly a very strong second-order transition.

Monte Carlo renormalization group techniques must be applied to this model with some care in
order to generate a consistent flow diagram. The point is that most traditional blocking procedures (see,
e.g., ref. [5.48]) for gauge fields involve each original link in the definition of several block links.

A

0 -
0 B ®
Fig. 5.1. Flow diagram of the SU(2)-Higgs model.
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Specifically, the most obvious blocking method is to make use of the fact that the sum of SU(2)
elements V differs from another SU(2) element by at most an overall normalization factor. This
serendipity suggests a definition of the block links of the form

Vium
Vo = Get(V,) (541)
where
Vsum = E Vpath 3 (542)

path

and V., refers to an ordered product of V’s between the two block sites connected by V', . Thus the
block link has the appropriate transformation properties under gauge rotations.

Unfortunately when several paths between two block points are thus averaged, the result includes
each original link in several block links. Spurious interactions are generated between block links, which
lead to an inconsistent flow diagram [5.35, 5.39, 5.40]. A solution to this problem is to block with sets of
paths which are chosen so that each link is included in only one block link [5.49]. Expectation values in
the blocked system can also be defined as averages over ensembles of different blocking schemes [5.40].
The scalar fields can be blocked as well, by taking the suitably normalized average of the original scalar
fields in the block, appropriately parallel transported [5.35, 5.39].

After this blocking is complete, a new set of block variables { @'} and {V'} is defined for a given set
of {@} and {V}. If the original configurations are generated with statistical weight

e SV DV DO DO, (5.43)
where
eV = f DVDO® D" Pe ¥, (5.44)

and P = P[{V’, @'};{V, ®}] is the projection operator which defines the blocking transformation. The
requirement that the partition function [cf. eq. (5.27a)] is preserved by the blocking imposes the
constraint

fDV’ch'Ddﬁ' P=1. (5.45)

The projection operator is otherwise arbitrary.

The problem at this point is to calculate the block action S'{V', @'} given a set of configurations
which are generated with the weight (5.43). Various methods have been proposed for this general
problem [5.50, 5.51, 5.39, 5.35, 5.40]. One technique that seems particularly well-suited to the present
problem makes use of a set of Schwinger-Dyson identities in the block system [5.35,5.51].

The idea of this method for the extraction of the block action is to use the principle of gauge
invariance to generate consistency equations involving various block coupling constants. Consider the
effect of infinitesimal SU(2) gauge rotations R, on the block scalar and link variables,
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R®,=(1+ie-0)®,=P,+€-4,9,, (5.46a)
RV, =(+ie-a)V, =V, +e-4, .V, (5.46b)

£ N n, o nu
where 4 and 4, , are differential operators. Because the measure is gauge invariant, the following
identites hold in the block systema

fDV' DO’ DP' A, -[(4,A4,)e @] =0, (5.47a)

f DV'D®*' DO’ 4, , -[(4,,B,)e " v@]=0, (5.47b)

where the A, and B,, are gauge-invariant functionals of the {V'} and {®'}. The relations egs. (5.47)
are exact in the block system, and yield an infinite set of identities. In particular, the A, and B,, can be
chosen as an infinite orthogonal basis set spanning the space of all possible block actions, so that

S{V, &} =2, (c, A, +d,B,), (5.48)

with the ¢, and d,, denoting appropriate coupling constants. Then egs. (5.47) can be used to express
the ¢,, and d,, in terms of expectation values over the {V’, @'} ensemble. Thus the complete set of
block couplings {c, d} which specifies the block action can be determined.

This task would be vastly simplified if the block action were of the same form as the original action,

Siuy (V' @'} = BiBy+ k'A,, A,= SV, @'}, B,=S,{V'}. (5.49)

If eqs. (5.49) are substituted into eqs. (5.47), the result is a two-by-two set of linear equations, from
which B, and «’ can be calculated in terms of expectation values in the block system. Essential to this
calculation is the assumption that the block action is precisely of the form eqgs. (5.49). An alternative
point of view is to assume that egs. (5.49) are a good approximation to the block action, and then
simply define effective couplings B, and k' by the combination of egs. (5.47) with egs. (5.49).

This “maximal” truncation of the blocked action to two couplings may be a good approximation if
the blocking scheme is sufficiently comprehensive. However, it must be pointed out that although such
approximations can be systematically improved by the inclusion of more terms in the block action, no
general method for the analysis of errors generated by this truncation is known. Clearly much more
work needs to be done on the optimization of the blocking transformation [5.52].

Nevertheless, such truncated calculations do yield a simple conceptual framework for understanding
the nonperturbative structure of quantum field theory. This can be illustrated by considering the results
of such calculations for the SU(2)-Higgs model. Blocking transformations with scale factor b = V2
[5.40], b =2[5.39], and b =3 [5.35] have been applied to this model. In all cases, the flow diagram was
of the qualitative form shown in fig. 5.1.

In these simulations, a fixed point G appears at infinite 8, and « = «_, which presumably allows only
a trivial continuum limit [5.41-5.43]. A separatrix GM of the flow lines extends into the interior of the
flow diagram, in accord with the expected line of phase transitions. This close correspondence between
the flow and phase diagrams is reassuring, for such detailed agreement (unlike the case with critical
exponents) is not guaranteed by universality. If this separatrix actually represents a phase transition,
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then the point M at which it terminates must be a fixed point of the renormalization group
transformation. This fixed point is marginal (y, =0) in the direction du, of the separatrix connecting it
to point G, since the renormalization group flows go in the same direction on both (+8u,) sides of the
fixed point. The critical exponent y, which governs this phase transition can be determined by
measuring the derivatives of the renormalization group flows in the direction du, orthogonal to this
separatrix. If, for example, the separatrix depicts a first-order phase transition, then according to the
standard lore y, equals four [5.53]. The matrix of derivatives of the renormalized couplings with respect
to the original couplings, dK!/dK,, has eigenvalues b”' and b’% where b is the scale factor of the
blocking transformation. Unfortunately, these eigenvalues have yet to be directly measured.

Other inferences can also be drawn from the topology of the flow diagram. For example, the
presence of a marginal fixed point generally implies the existence of logarithmic corrections to scaling
(in this case along the separatrix MG) [5.35, 5.47]. Should the segment MG turn out to be a line of
first-order phase transitions, it is unlikely that a continuum theory can be defined there (except possibly
at the point M itself). Therefore, given the likelihood of that possibility, we return to the full lattice
standard model in search of a continuum theory.

5.4.3. Flow structure of the lattice standard model

The lattice standard model can be treated by techniques similar to those used in the SU(2)-Higgs
model discussed above. Many analytical results (including the phase diagram) for this model have been
reported [5.34, 5.54]. One Monte Carlo renormalization group study has also been performed [5.35].
Some of the results of these analyses will now be described.

Like the SU(2)-Higgs studies described above, the renormalization group flow structure presented
here (in fig. 5.2) for the lattice standard model is the result of a maximally truncated calculation. A set
of three coupled linear equations is generated by using the invariance of the integration measure under
infinitesimal gauge rotations, coupled with the assumption that the block action is well approximated by
the functional form [cf. eq. (5.34)]

SUULV, @'y = BIS AU+ BIS,{V'} + k'S {U", V', '} . (5.50)

The equations used to generate the block renormalized couplings are determined from the SU(2)
invariance of the integration measure [cf. egs. (5.46)],

Fig. 5.2. Flow diagram of the lattice standard model.
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Trd,.-[(4,5)e>]=0, (5.51a)
Tr4, - [(4,,8)e"]=0, (5.51b)

and the U(1) invariance of this measure,

8 ( ® ) _s,] _
R | R AR (5.510)
where the definitions
U,’W Eexp(ien,ﬂ), TrEfDUjDVfD¢+ jD(D (5.52)

have been used. Equations (5.51) yield a coupled set of three equations for the three unknown block
couplings B, B; and «’.

The flow diagram generated by such methods is likely to be a crude approximation to the true
renormalization group flow structure of the theory. It can, however, be a useful guide into unknown
territory, for the actual location of the continuum limit of a lattice theory is not a priori obvious from its
phase structure. Despite the uncertainties involved, such a preliminary analysis can be useful, if only to
produce a conjecture as to the location and nature of the continuum limit(s). Moreover, the conjecture
thus produced can be systematically improved by the inclusion of more operators in the truncation
scheme.

Figure 5.2 shows the phase structure of this theory [5.34]. Note that there are three phases (described
above), labelled “confinement”, “Coulomb”, and “Higgs”, respectively. The confinement phase is
distinct from the Coulomb and Higgs phases, which are analytically connected.

The detailed flow structure generated in the maximal truncation scheme [5.35], like the detailed
phase structure [5.34], is quite complex. Thus only a survey of the most important features is presented
here. In particular, only two of the several additional fixed points which appear in the full theory are
depicted in fig. 5.2. These are the two fixed points with the greatest number of relevant directions
(labelled “C” and “T” in fig. 5.2).

One salient feature of the flow diagram is that no fixed point appears at finite 8, with three relevant
directions. The most relevant fixed point at finite 3,, labelled “C” in fig. 5.2, has one relevant direction
(essentially along the B, axis) and two marginal directions (essentially along the x and B, axes). Should a
nontrivial quantum field theory exist at this point, two of the renormalized parameters of the theory
should be bounded (recall from section 3 that marginal directions in general correspond to bounds on
couplings) and the remaining one unconstrained.

Another fixed point occurs at infinite 8,. This fixed point is labelled “T” in fig. 5.2. The values of «
and B, are finite at this fixed point. This combination suggests that a continuum theory defined at this
point is asymptotically free in the SU(2) gauge coupling, i.c., is defined at zero g, (infinite 8,). This in
turn suggests that if a nontrivial quantum theory exists at this point, then the SU(2) gauge fields may
not be necessary for the theory to be nontrivial.

The efficacy of the renormalization group is now evident. The search for the most likely locations in
the lattice parameter space for a continuum limit for the theory can be narrowed in scope. Moreover,
predictions can be made about the number and range of the independent renormalized couplings in the
continuum theory. Thus, for example, if (as is suggested by the universality hypothesis) the quartic
coupling constant is irrelevant at the fixed point then one of the parameters of the theory (e.g. the
Higgs mass) can be predicted from the others [5.13, 5.35].
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Several important studies must be done, however, before any firm conclusions can be drawn. For
example, little is known about the variable-magnitude SU(2) X U(1) lattice standard model [5.55].
Moreover, no comprehensive analysis of the effects of variant or higher-representation lattice actions in
this model has been made [5.58]. Further computations (by the Monte Carlo renormalization group or
other methods like finite-size scaling [5.57]) are needed before the critical exponents of the theory can
be obtained. These exponents would yield the anomalous dimensions of various operators (like @°) in
the theory, and could be used to learn whether a nontrivial continuum limit for the standard model is
possible. Much work therefore remains to be done, and the fate of the standard model as a fundamental
theory still remains an open question.

5.5. The standard model as a low-energy effective theory: What if there is no fundamental Higgs particle?

The preceding subsection has made it clear that the standard model might be a trivial theory,
although the issue is far from settled. Should this triviality be demonstrable, it is fair to question the
whole idea of symmetry breaking by elementary scalars, and, ipso facto, the necessity of their existence.

Yet the concept of spontaneous symmetry breaking by elementary scalar Higgs particles may still be
a metaphor of some utility in theories of the weak interaction. Even if Higgs particles do not exist, it is
worthwhile to ask whether the standard model can be used as an effective phenomenological theory up
to a certain cutoff momentum scale.

Ideas of this nature are certainly not new. They are implicit in early estimates [5.58] of upper bounds
on the mass of the Higgs boson. These bounds are predicated upon the assumption that tree-level
unitarity must be respected unless ‘““‘new physics’ appears or the weak interaction becomes ““strong” at
some scale. (The idea of a Higgs sector which is strongly interacting and related ideas have been
considered by several authors [5.59]; however, this possibility may be generally inconsistent with the
idea that a pure Higgs theory is trivial.)

The concept that the standard model is an effective theory, valid up to some scale at which
unspecified “‘new physics” appears, is rather vague, but gains credence from a well-known ““decoupling”
theorem [5.50]. According to this theorem, the physical effects of high-mass particles in renormalizable
field theories are unobservable at low energies. Various attempts to estimate the scale at which the
“new physics” appears (or, conversely, to bound standard model parameters under the assumption that
no “new physics” appears up to some specified large momentum scale) have been made [5.61, 5.13,
5.62-5.66, 5.41, 5.43]. A brief summary of a few of these ideas is now made.

5.5.1. Upper bounds on the Higgs mass from triviality: General philosophy

The assumption that a pure ¢* field theory is trivial can lead to bounds of phenomenological
relevance. Specifically, it is assumed that the standard model is inconsistent as a fundamental theory but
is a good effective theory up to some momentum scale A. Then the demand that the Landau ghosts
predicted by naive perturbation theory be avoided generates restrictions on the renormalized couplings
in the theory.

The simplest approach is to assume that gauge fields do not significantly modify the beta function for
the quartic coupling. From the discussion of subsection 5.2, it is clear that this is a very strong (and
probably invalid) assumption, yet the results are conceptually quite clear. Consider a pure ®* field
theory defined by the Lagrange density

Ly=1(3,®)"(9"®) ~ smy® & - (@7 D), , (5.53a)
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where @ is the usual SU(2) complex doublet. The beta function for this theory to one-loop order is
d}\ 3 .,

=94 5.53b

BN =, =57 A (5.530)

by the results of subsection 5.2. The solution of egs. (5.53) is given by

L _1_3 ., (5.54a)

/\(t) /\R 27;'2
where in terms of the running momentum scale Q and renormalization point u,

t=1n(Q/p), (5.54b)

and A is the renormalized (¢ = 0) quartic coupling. For a given A, the running coupling A(f) becomes
negative at some scale A. Thus A(Ay) is the largest scale at which the theory makes sense (in the
one-loop approximation). Conversely, if A denotes the largest momentum scale at which the theory is
still valid, then an upper bound on the renormalized quartic coupling Ay is implied [5.62],

AR = (3/27r2)11n(/1/y) . (5.55)
From the tree-level result for the ratio of Higgs mass to W mass in the standard model,
my/my, = (8A./g°)"*, (5.56)
an upper bound on the Higgs mass is implied [5.62],
my<my_. =my Am (In A/w) "> =900GeV (In A/p) ™', (5.57)
;m V3

which suggests a conservative upper bound of about 1 TeV for the Higgs boson mass, since A must be
larger than m,,.

Obviously the bound (5.57) requires in addition not only the assumption that the gauge and Yukawa
couplings remain unimportant up to the scale A, but also the assumption that higher-order terms in A in
the beta function (5.53) are likewise insignificant. This latter assumption may be obviated by numerical
simulation of a lattice model, as was suggested in ref. [5.62]. Numerical simulations of this nature have
recently been performed [5.63, 5.43], and imply that renormalized perturbation theory gives essentially
the correct results, provided that the “cutoff” scale A is reasonably large.

5.5.2. Upper bounds on the Higgs mass from coupled gauge-Higgs systems

As discussed in the above subsection, the addition of gauge fields can significantly change a pure ¢*
theory. For example, a field theory with gauge fields coupled to elementary scalars can be perturbative-
ly asymptotically free in all couplings even though the pure scalar theory is not. Thus it is not surprising
that the addition of gauge fields can improve the bound eq. (5.57), as was pointed out in various
contexts [5.13, 5.64, 5.62]. These bounds have since been elaborated upon by numerous authors
[5.65-5.67, 5.41, 5.43].
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A general property of these bounds is the observation that the ratio A(f)/g>(¢) (the running quartic
coupling to the running squared U(1) coupling constant) should not become unreasonably large before
the momentum cutoff A is reached. This seems to be a sensible minimal condition for consistency in a
theory, for, if there is an energy regime where the running quartic coupling A() is much larger than the
other couplings, a reasonable expectation is that the scalar sector will decouple from the rest of the
theory. It is then difficult to see how the theory can escape triviality (but see ref. [5.59]).

These bounds [5.13] improve noticeably when the top quark Yukawa coupling is also included (see,
e.g., ref. [5.64]). These authors identify three cases:

Case A. When the top quark mass m, is less than 80 GeV, the authors of ref. [5.64] quote an upper
bound my .. on the Higgs mass of about 125 GeV. Obviously this bound is remarkably low.

Case B. When m, >80 GeV, their bounds on the Higgs mass vary sharply with m,. The bounds
65 GeV <m,; <122GeV for m, =120 GeV and 140 GeV <m; <148 GeV for m =150 GeV are re-
ported.

Case C. For m, =168 GeV, the largest value allowed in this scenario, m =175 GeV. Note that this
value is a prediction, and not a bound.

The complexity and importance of this issue demands that full nonperturbative studies of the
problem be performed [5.35]; nevertheless it is clear that the problem is interesting and worthy of
further analysis. It may even be that a fundamental cutoff is required in the theory [5.66,5.68],
although such a pronunciamento requires an understanding of the role of the axial anomaly [5.69] in a
cutoff theory. Naively, this anomaly vanishes when a cutoff is introduced [5.36], and implies, for
example, that the w’— 2y decay rate is zero. (A regularization scheme which respects chiral symmetry
is assumed here.)

Thus it can be seen that, with the addition of certain specific assumptions, the conjecture that the
minimal standard model is a good effective model (but not a consistent fundamental theory) up to a
large momentum scale A implies a bound on the mass of the Higgs particle. Experimental meas-
urements up to a mass of about my . in this scenario should thus either find the Higgs particle, or
some unspecified “‘new physics” which causes the formalism to break down.

6. Will Higgs particles ever be found?

“I would like to offer a theoretical prediction at the 5% confidence level: within five years there will
be a rigorous construction of the solutions of A(¢*), and spin-3 quantum electrodynamics in
four-dimensional space-time.”

Arthur S. Wightman (1977) [6.1]
“When we try to pick out anything by itself, we find it hitched to everything else in the universe.”

John Muir

Expectations often remain unfulfilled. Much of the early excitement over the standard model of the
weak interactions was caused by the discovery that it was renormalizable, and hence could be
considered a viable candidate for a fundamental theory of elementary particles. The standard model
was a remarkable achievement, for it included the lucus a non lucendo of massive gauge bosons in a
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consistent fashion and so afforded a place for the mediators of the weak force, the W* and Z° The
standard model also posits the existence of an unobserved elementary scalar particle, the Higgs boson.
The interactions of this Higgs particle are a necessary ingredient in the standard model.

As discussed in sections 2-4 of this review, strong evidence suggests that a theory which only
includes Higgs particles is “trivial” or noninteracting. Should this triviality persist when the Higgs is
“hitched to everything else” in the standard model, then the standard model scenario is in trouble. It
would then be fair to ask if a real “Higgs particle” should exist, or whether this putative elementary
scalar is instead just an invisible metaphor for a more complicated mechanism. The obvious question to
ask—what this new mechanism may be—is not as obviously answerable.

A more informative set of possibilities does, however, exist if the Higgs sector of the standard model
(or indeed of any realistic Higgs model) is nontrivial. In this case it is likely possible to calculate upper
bounds upon the Higgs mass or even to predict its value. The requirement that the theory be nontrivial
thus can imply phenomenological constraints on the theory (see section 5). By contrast, a naive
semiclassical analysis of the scalar sector of the standard model does not yield any information on the
Higgs mass.

It is evident that the question of the triviality of Higgs models is of more than philosophical interest.
The inquiry as to whether an elementary scalar particle exists (and if its mass is predictable) is also given
immediacy by the contemporary agenda for the construction of new accelerators. The intended purpose
of these machines typically includes a search for the Higgs particle. Fortunately for these experimental
efforts, progress is being made in the understanding of triviality and its implications for elementary
particle phenomenology. Much remains to be done, however. Although techniques such as the analysis
of lattice gauge theories by the Monte Carlo renormalization group may well hold the key to the riddle
of triviality, the final answers are not yet known. This report therefore concludes with the same
question as it started with: Can elementary scalar particles exist? The future holds the answer.
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